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Abstract
Focusing on obtaining in-memory evidence, current live ac-
quisition efforts either fail to provide accurate native sys-
tem physical memory acquisition at the given time point or
require suspending the machine and altering the execution
environment drastically. To address this issue, we propose
Vis, a light-weight virtualization approach to provide accu-
rate retrieving of physical memory content while preserving
the execution of target system. Vis encapsulates the na-
tive system into a single virtual machine and then conducts
accurate acquisition by manipulating nested page table in
hypervisor. We present the design and implementation of
Vis, prove its acquisition reliability and evaluate its perfor-
mance in live acquisition scenarios.

1. INTRODUCTION
A typical computer forensics scenario has three steps: ac-

quisition, analyzing and reporting [18]. Focusing on the
stages of acquisition and analyzing, computer forensics pro-
poses two key challenges: how to obtain the complete sys-
tem state and how to analyze the retrieved image effectively.
The former one is more important because missing evidence
leads to an incomplete or wrong investigation result, even
with an incomparable analyzing technology.
Transcending static acquisition strategies, live acquisition

extends the information gathering range of forensics exam-
iner, i.e., involving the volatile data. Considering criminal
evidence being stored on permanent I/O device only [5],
most static acquisition tools clone disk offline to accurately
obtain the evidence. Nevertheless, evidence data existing in
volatile memory without disk correspondence are totally be-
yond the acquisition scope of static acquisition tools. To ad-
dress such issue, the requirement of live acquisition becomes
essential. Live acquisition tools can extract the volatile data
in the memory of the target system without blocking it.
These data involve process information [4], process list [9],
kernel objects and raw memory content [3], which may be
leveraged to record and reproduce the criminal scene.
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Based on the architecture difference, previous software live
acquisition solutions can be divided into two categories. The
first one is Virtualization Introspection, which means the tar-
get system is wrapped in a Virtual Machine (VM) while the
acquisition module exists in a hypervisor like Xen. VIX
tools [9], Ruo’s work [3], Srinivas’s work [10] and BodyS-
natcher [16] all belong to this type. The second one is
Non-Virtualization Introspection. It is designed to obtain
indicated volatile system state with a minimal environment
impact. Iain et al. [17] list several practical tools for dif-
ferent scenarios, including Win32dd, KnTTools and Fport.
Memoryze [11] is another popular user process forensic tool
of this type.

While owning the ability of unearthing tremendous vol-
ume of volatile data, live acquisition also faces significant
challenges and risks. The first challenge is that previous
virtualization based live acquisition methods alter the sys-
tem environment significantly. The reason comes from the
fact that many previous approaches required loading hyper-
visor prior to the launching of operating system (OS) [3,
9, 10]. When employing this method on a non-virtualized
host, the forensic examiners more or less change the sys-
tem running environment. In the extreme case, rebooting
even reinstalling the whole system is required, thus caus-
ing a great loss of information from volatile memory. The
second challenge raises from the fact that the system is
not static [2]. Contents in physical memory changes with
the running processes, making those previous In-OS live
acquisition methods unable to guarantee the accuracy of
the retrieved physical memory content at the given time
point unless suspending the machine. However, providing
ideal suspending functionality would require hardware sup-
port [8]. As a result, practical In-OS live acquisition tools,
like Win32dd and Memoryze, never consider result accuracy
as one of their design goals. Also, the acquisition task would
take longer when transmitting data over cables. It is re-
ported that BodySnatcher [16] requires suspending the tar-
get system for 45 minutes to accomplish a complete 128MB
RAM acquisition over 115kbps serial I/O cable. Moreover,
it is noteworthy that dumping an accurate physical memory
image is difficult by manipulating all page tables for In-OS
live acquisition tools, because possible existence of hidden
processes makes it tough to actively trace all working page
tables.

In this paper, we propose a novel acquisition system named
Vis to access these challenges. Leveraging virtualization ap-
proach, Vis provides accurate retrieving of native system
physical memory while preserving the execution of target



system. To validate our approach, we have implemented a
proof-of-concept prototype and conducted a series of evalu-
ations. The result shows that even under high pollution rate
during the acquisition period, Vis can still ensure the accu-
racy while preserving the target system execution. More-
over, the performance evaluation result demonstrates that
Vis is able to retrieve an accurate system image in 105.86
seconds comparing with a range of 17∼76 seconds for Win32dd,
18 minutes for Hypersleuth on an 1Gbps network. Mean-
while, it incurs 9.62% performance overhead to existing ap-
plications. These results prove that Vis owns practical value
in real world application.
The rest of the paper is organized as follows. Section 2

presents Vis’s design model. Section 3 evaluates Vis through
experiments. Finally, we conclude our work in Section 4.

2. DESIGN & IMPLEMENTATION
We propose two key techniques termed Late-Virtualization

and Virtual-Snapshot , to fulfill the design requirement of
Vis.

2.1 Late-Virtualization Approach
Late-Virtualization technique is used to insert a light-

weight hypervisor after the target OS is started up as well
as keep hypervisor functioning without suspending the tar-
get system. Late-Virtualization leverages the wide support
of hardware virtualization on commercial x86 processors to
fulfill the design goal. In current prototype, Vis employs
Intel VT-x technology [1].
Intel VT-x separates the CPU execution into two modes:

VMX root mode and VMX non-root mode. At any time
point, CPU runs on only one of the two modes. Software
running in hypervisor can supervise guest machine execu-
tion by pre-defining the interested event in VMCS (Virtual
Machine Control Structure) which contains VM and hyper-
visor execution environment data. After that, any sensi-
tive instruction executed in a guest VM is interrupted by a
VMEXIT event and traps to the hypervisor. The control
flow never returns back unless hypervisor finishes handling
the event and then explicitly resumes running the guest ma-
chine.
A typical hypervisor launching consists of three steps.

First, the VMX root-mode is enabled. Second, the CPU is
configured to execute the hypervisor in root-mode. Third,
the guests are booted in non-root mode. It worths not-
ing that each core can run at most one hypervisor at any
time in current VT-x implementation. Thus we do not con-
sider the recursive virtualization situation due to the lack
of hardware virtualization support inside guest virtual ma-
chine. Since Intel VT-x allows to startup a hypervisor at
any time, we change the third step to continue running the
virtualized native system in order to delay launching hyper-
visor. Figure 1 depicts how the native system environment
changes after loading/unloading Vis. During the loading
phase, Late-Virtualization builds the required virtualization
environment and wraps the target OS into VM on the fly.
Loaded as an OS driver, Vis shares the same usage model
with many existing forensic tools listed in [17] and requires
memory by invoking standard OS APIs. One potential prob-
lem is that in order to load the acquisition tool itself, certain
memory space is needed and thus there is a potential of jeop-
ardizing evidences in freed memory space. Vis meets this
issue by claiming that according to the Locard’s exchange
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Figure 1: The Overview of Late-Virtualization Ar-
chitecture.

principle [6], it is inevitable to bring in modification to the
observed object. However, considering the accurate volatile
information gathered from the remaining memory, this little
modification within Vis installation is acceptable. After all,
no zero invasive solution for a posteriori forensic analysis
exists [12].

One fundamental assumption of Vis is the need for a trust-
worthy hypervisor. This is shared by many previous re-
search efforts [7, 14, 15]. Even for late-launched hypervisors,
previous studies also make the same assumption [12, 16].
Specifically, NewBluePill project [12] discusses how to resist
attacks from guest OS by constructing private page table
and shadowing control register accesses. Besides, [12] men-
tions that the hypervisor code can be attested before loading
by employing Trusted Platform Module (TPM). Adopting
these security approaches in Vis only requires more engineer-
ing effort, lengthens the time needed during loading and in-
curs slight performance overhead at runtime. In brief, after
starting up from commercial OS, Vis assumes the hypervisor
is safe enough for live acquisition.

2.2 Virtual-Snapshot Approach
Virtual-Snapshot is used to accurately capture the con-

tent in physical memory without suspending target system’s
normal execution. Two challenges are identified in accu-
rately dumping the physical memory content. First, Virtual-
Snapshot should be able to identify which part of physical
memory content is newly generated and point out what the
original content in that location is. Second, the large size
of physical memory causes a long time to acquire all the
content. Supposing the target system owns 2GB physical
memory, it takes more than 20 seconds to obtain a complete
memory dump and output it to the local disk at 100MB/s
transfer speed. Previous live acquisition approaches need to
suspend the machine in order to ensure the result’s accu-
racy. Hence, the required long suspending time makes them
inappropriate in stealthy live acquisition occasion.

The first problem is solved by Nested Paging mechanism
in Virtual-Snapshot. Figure 2 shows how Nested Paging
mechanism translates arbitrary Guest Virtual Address (GVA)
into corresponding Machine Physical Address (MPA). In
traditional virtualization, Nested Paging mechanism is em-
ployed to host multiple VMs on the same physical machine.
As a result, a two-level translation mechanism is needed
to ensure the compatibility with legacy OSes. Since mod-
ern hardware virtualization tries to eliminate the guest OS
sense of the underlying hypervisor [13], the first level ad-
dress translation, which turns GVA to Guest Physical Ad-
dress (GPA), still employs the original guest OS page table
pointed by CR3 register as the traditional way does. At
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Figure 2: Nested Paging Mechanism. This figure de-
scribes how GVA is translated into MPA. G means
that the corresponding TLB entry stores GVA to
MPA translation, while H means that the TLB en-
try is used for translating GPA into MPA. RWX
stands for read, write and execute permissions on
specific memory region.

the same time, the second level address translation, which
uses Nested Page Table (NPT) to translate GPA into MPA,
is pointed by Nested Page Table Pointer. It is worth not-
ing that Shadow Page Table (SPT), the traditional software
Nested Paging approach which uses another sets of page
tables to achieve GVA to MPA translation, can also be em-
ployed by Virtual-Snapshot in the case that hardware as-
sisted nested paging is unsupported on legacy hardware.
In order to monitor the modification on the whole range

of target system’s physical memory, Virtual-Snapshot first
creates an identical mapping from GPA to MPA on the sec-
ond level address translation. After that, Virtual-Snapshot
actively queries guest OS for its valid physical memory range
by examining kernel data objects. This is because certain
amount of system memory address space is reserved for ex-
isting I/O devices, e.g., graphic card, network card, etc.
In addition, on x64 architecture the valid physical address
space is far more tremendous than the maximum supported
memory capacity currently. Hence, distinguishing physi-
cal memory range from I/O memory range and unallocated
memory range helps build the acquisition range in Vis.
After obtaining the knowledge of a clear physical mem-

ory scope within Vis startup, Virtual-Snapshot revokes write

permission on the whole guest physical memory range when
acquisition command is issued from Vis client. As shown in
Figure 3(a), achieved by manipulating the second level NPT,
revoking the write permission on guest OS physical memory
page forces any subsequent writing to this page to gener-
ate nested page fault before changing any single bit within
it. Then, hardware automatically traps to Vis hypervisor to
handle it accordingly with hardware generated guest fault
frame, which includes the address of the modifying page,
the allowed permission as well as the desired permission.
The pre-registered nested paging access violation handler in
Vis hypervisor flushes the data cache in order to get per-
sistent view of memory, dumps the content of the trapped
page, removes write lock from the trapped page by regrant-
ing the write permission, and then resumes guest machine
running from the trapped instruction. Since the guest ma-
chine resumes from writing to the same guest physical page
again and this time no write lock is put on the same page,
the write operation succeeds without interrupting the origi-
nal information flow, as shown in Figure 3(b). In this way,
Virtual-Snapshot obtains the original content of the guest
physical page being modified, while keeping the guest OS
and application’s information flow, even in the case that Vis
is orthogonal to the guest machine.

The second problem is solved by an amortized manner
of Virtual-Snapshot. According to our investigation, only a
small portion of guest physical pages are modified on each
processor during a single instruction execution. Hence, it is
sufficient for Vis to dump only the changing pages in order
to obtain a complete original content of guest physical mem-
ory. Dumping the remaining part of guest physical pages is
deferred until either their modification or the end of acqui-
sition if their content is never changed. Similar ideas were
also suggested by HyperSleuth [12]. Unfortunately, compar-
ing with our approach, HyperSleuth sufferred from degen-
erated performance because it ignores the memory access
continuity in its algorithm. Vis improves its acquisition per-
formance by dumping multiple continuous physical memory
pages per trap. As a result, by lengthening the necessary
acquisition time, Vis does not require to suspend the tar-
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Figure 4: Accuracy evaluation. Different page pol-
lution rate is tested for 2GB memory dumping in
each test. Missing Pages means the number of the
obtained pages containing polluted content.

get system. Furthermore, the acquisition incurred overhead
is slight because Virtual-Snapshot dumps small portion of
critical pages first and large part of remaining pages later in
little pieces.

3. EVALUATION
The current Vis prototype is fully implemented on Win-

dows 7. All experiments were conducted on a host config-
ured with a 3.2GHz Intel i5-650 processor, 2GB RAM and a
gigabit ethernet card. We use the uniprocessor x86 version
of Windows 7 in our experiments. In this section, we begin
with verifying the accurate live acquisition guarantees pro-
vided by Vis, then present Vis’s overall performance as well
as the performance impact on the target system.

3.1 Effectiveness
Figure 4 depicts the acquisition accuracy evaluation of

Vis with another two commonly studied live forensic tools,
Win32dd and Memoryze. All of these tools accomplish live
acquisition without suspending the target machine. The ex-
periment methodology is that we load the acquisition pro-
cess first, and then manually start pollution process imme-
diately after beginning acquisition. The pollution process is
used to challenge the accuracy of acquisition result. This is
achieved by allocating and filling memory with unique pat-
tern of content. Thus, an ideal live acquisition tool should
dump none of the polluted content. As shown in Figure 4,
even in the situation that the pollution process allocates
and pollutes memory at the rate of 2500 pages per second
for 20 seconds, no polluted content is dumped by Vis. On
the contrary, though Win32dd finishes its dumping physi-
cal memory task in 17 seconds and Memoryze, 18 seconds,
they recorded 71.62% and 56.96% polluted content in the
result files respectively. The result shows that Vis is able to
provide accurate live acquisition.

3.2 Performance Impact
Table 1 presents the micro analysis which measures the

overhead of handling writing CR3 and handling EPT vio-
lations, both including acquisition state and idle state. In
these experiments, we perform a complete live acquisition

On Acquisition Idle

Scenario 1: Write CR3

#VMEXIT world switch 966 548

Write CR3 value 113 113

Handle dumping 214934 N/A

#VMResume world switch 1355 760

Scenario 2: Handle EPT Violation

#VMEXIT world switch 919 N/A

Clone origin page contents 36232 N/A

Reset EPT entry 157112 N/A

#VMResume world switch 2243 N/A

Table 1: Vis Micro Analysis. This figure shows the
needed clock ticks in handling Write CR3 as well as
EPT violation in the target system.

compared with keeping Vis in idle state for the same time
period. Hence, both scenarios have happened for tens of
thousands of times during this period. Then, the average
is recorded as the final result. In Table 1, “#VMEXIT
World Switch” means the total clock ticks spent on hard-
ware context switch and delegating event to the proper han-
dler; “#VMResume World Switch” means the total clock
ticks needed for both necessary cleaning work and hardware
resuming VM. All the benchmarks exhibit low overhead in
context switch between the target system and Vis. Besides,
there is no EPT violation handling in Vis idle state because
no memory write is intercepted theoretically.

We then compare the performance of Vis with legacy tools
in acquisition scenario. Win32dd adopts different I/O buffer
sizes to supply four speed modes. The elapsed time we
recorded is directly retrieved from Win32dd acquisition re-
port. According to our evaluation, Win32dd requires 17∼76
seconds for a complete live acquisition. In comparison, Vis is
able to retrieve an accurate system image in 105.86 seconds
when configured to dump 8 pages per trap.

For a complete performance evaluation, we also measure
Vis in idle state runtime overhead to target system. CPU
intensive and I/O intensive benchmarks were selected to run
with Vis so that the quantized result can be evaluated re-
spectively. For CPU intensive applications, we use the SPEC
INT 2006 suite. For I/O intensive applications, we select
IOMeter, netperf and Apache web server. In average, Vis
in idle state incurs 9.62% performance impact to the tar-
get system, as presented in Table 2. Besides, the network
throughput result shows it is increased by 1% in average
after Vis is loaded. Such experimental result is still under
investigation.

Although Vis averagely incurs 9.86% performance over-
head in SPECint 2006, it is noteworthy that Vis exhibits
50.38% performance impact in MCF benchmark, which im-
plements a graph algorithm. According to our investiga-
tion, the total EPT traverse penalty mainly contributes to
this overhead. On the one hand, a high EPT Translation
Look-aside Buffer (TLB) miss rate is incurred. In MCF’s
source code, arc t type is 32 bytes long and nr group vari-
able is always set to be 870 at runtime. When executing the
for-statement shown in Figure 5, the arc value increments
870 times 32 bytes in each for-loop. This leads to a poor
space locality, which then causes higher probability in oc-
cupying EPT TLB due to the fact that TLB is shared by



Benchmark Overhead

CPU SPECint 2006 9.86%

I/O

IOMeter 0.51%

Netperf -1.05%

Httpd 0.30%

Table 2: Vis Performance Impact

165 for( ; arc < stop_arcs; arc +=
nr_group )

166 {
167 if( arc ->ident > BASIC )
168 {
169 /* red_cost =

bea_compute_red_cost(arc); */
170 red_cost = arc ->cost - arc ->

tail ->potential + arc ->head ->potential
;

...
178 }
179 }

Figure 5: A For-Statement in MCF Source Code.
This for-statement is the hottest spot of TLB miss
in MCF benchmark. It originally exists in the source
code of pbeampp.c

both nested paging and traditional paging in current imple-
mentation of hardware virtualization. On the other hand,
every EPT TLB Miss costs the guest machine a maximum
14 times of memory access overhead to complete the nested
address translation on x86 platform. This is calculated ac-
cording to the following facts: traditional page table owns
two level paging structures, while EPT owns four on x86
platform. Hence, the TLB Miss overhead would be greatly
magnified when EPT is introduced in.

4. CONCLUSION
We proposed Vis, a light-weight virtualization approach

to provide accurate retrieving of native system state while
the target system stays running. Vis achieves its goal via two
key techniques of Late-Virtualization and Virtual-Snapshot.
Late-Virtualization is used to provide an isolated running
environment for live acquisition tools after the target OS is
started up. Virtual-Snapshot is employed to accurately ob-
tain target system’s physical memory content at the given
time point. It avoids suspending target system during main
memory content acquisition by adopting the amortized man-
ner in acquisition. A proof-of-concept prototype has been
developed to obtain physical memory content on Windows 7.
The evaluation result demonstrates that Vis can reliably
provide the intended accurate live acquisition with small
performance overhead.
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