
Traveling Forward in Time to
Newer Operating Systems using ShadowReboot

Hiroshi Yamada and Kenji Kono
Keio University, JST CREST

3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Japan
yamada@sslab.ics.keio.ac.jp, kono@ics.keio.ac.jp

ABSTRACT
This paper presents ShadowReboot, a virtual machine moni-
tor (VMM)-based approach that shortens the downtime for
software updates during an OS reboot. ShadowReboot re-
boots the guest OS in the background by spawning a VM
dedicated to an OS reboot and enables the user to switch
over to the rebooted state where the updated kernel and
applications are ready for use. ShadowReboot provides an
illusion to the users that the guest OS travels forward in time
to the rebooted state where the updated kernel and applica-
tions are ready for use. ShadowReboot offers the following
advantages. It can be applied to any patch to the kernels
and even system configuration updates. Second, it does not
need any special patch requiring intimate knowledge about
the target kernels. Third, it does not require any target
kernel modification. We implemented a prototype in Virtu-
alBox 3.0.8 OSE. Our preliminary experimental results show
that ShadowReboot shortened the downtime of commodity
OS reboots on Windows XP and five Linux distributions
(Gentoo, Fedora, Cent, Ubuntu, and SUSE) by 43 to 96%.

1. INTRODUCTION
Operating system (OS) reboots are an essential part of

updating contemporary kernels and applications on laptops
and desktop PCs. The downtime during OS reboots severely
disrupts the users’ computational activities. While the OS
is rebooting, the user cannot use his or her PC. This dis-
ruptive downtime is getting longer and more costly since
there are more and more software updates. This long dis-
ruption caused by these OS reboots discourages users from
conducting them, failing to enforce them to conduct software
updates. Although announced updates should be applied as
soon as possible because they tend to include fixing criti-
cal vulnerabilities, the resultant downtime may force users
to delay updating their software. As a result, users cannot
enjoy the new functionality or a better performance, and
even worse, the unfixed vulnerabilities can be exploited by
attackers. Research literature [1] notes “many desktop ma-
chines are not rebooted to apply kernel patches because of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

the burden imposed by rebooting”.
To eliminate the need for an OS reboot with software up-

dates, dynamic updatable kernels are a powerful way to ap-
ply patches to the kernels at runtime. However, making the
systems “reboot-free” is still difficult even when using dy-
namic updatable kernels for the following reasons. First,
existing dynamic updatable kernels are often designed for
fixing bugs in the kernel code region, such as condition
misses [1]. Therefore, it is difficult to manage the seman-
tic changes to memory objects, such as when adding a new
field to a data structure. They also cannot manage system
configuration updates because a restart of all the processes
is not involved. In these cases, we have no choice but to
conduct an OS reboot. Second, some dynamic updatable
kernels need intimate knowledge about the target kernels [3,
7]. To use them, we have to develop special patches from
the original ones. This task is non-trivial because it requires
knowledge about the internal structures of the target ker-
nels at the source code level. Lastly, we have to pay a high
engineering cost for redesigning and modifying a large part
of the kernels [4, 2, 8]. This is not easy because recent ker-
nels are more complex, and some of them are closed-source
and/or proprietary.

This paper presents ShadowReboot, which shortens the
downtime of OS reboots during software updates. Shad-
owReboot is designed to avoid the weak points of dynamic
updatable kernels. First, ShadowReboot can be used to
apply any patch to the kernels and can even be used for
system configuration updates. Second, ShadowReboot does
not need intimate knowledge about the target kernels at the
source code level; we do not have to develop kernel mod-
ules or special patches. Finally, ShadowReboot requires no
modification of the target kernels.

In ShadowReboot, we exploit the file access patterns of
commodity OSes during their reboots in software updates.
There are two key observations behind ShadowReboot. One
is that commodity OSes during reboots tend to access files
in administrative directories in which the system configura-
tion files and shared components files are stored; these files
are basically unmodified by the non-administrative tasks,
such as web browsing and e-mailing. The other is that al-
most all the files in the user directories are not accessed
during the OS reboots. These observations bring us to the
following point; even if we heavily modify the files in the
user directories while the OS is simultaneously rebooting,
the modification does not interfere with the reboot activity
and vice versa. This motivates us to parallelly run the users’
non-administrative tasks and an OS reboot.

To execute the users’ applications and an OS reboot in
parallel, ShadowReboot spawns a VM dedicated to an OS
reboot, which is called a reboot-dedicated VM . Since the
OS is rebooted on the reboot-dedicated VM, the user can
continue to execute applications on the original VM. Shad-
owReboot restores a snapshot of the reboot-dedicated VM
where the reboot is completed, keeping the disk consistency
between the original and reboot-dedicated VM. Although
the user still has to deal with the restoration downtime, it is
shorter than that of directly rebooting an OS on the original
VM. Through these operations, ShadowReboot provides an
illusion to users that a guest OS travels forward in time to
the rebooted state where the updated kernel and applica-
tions are ready for use.

To create a rebooted state that is consistent with users’
operations, we introduce the notion of reboot-terms, where
users can modify their working directories specified in ad-
vance while not modifying their administrative directories.
We need to pay close attention to restoring the created re-
booted state. Since we restore the snapshot of the reboot-
dedicated VM, the restored VM naturally provides users
with only the disk states of the reboot-dedicated VM. This
means that the users’ activities saved in the original VM
are discarded. To solve this problem, ShadowReboot per-
forms the following operation. It starts a reboot-term on
the original VM when the reboot-dedicated VM is spawned.
Next, when the rebooted state is restored, ShadowReboot
maintains the disk states of user directories on the original
VM by using an unrollback virtual disk whose state is not
affected by the restore operation. By doing so, we can re-
tain the saved users activities and make the states of the
running processes, such as the daemons, consistent with the
administrative files.

We implemented a prototype in VirtualBox 3.0.8 OSE.
Our preliminary experimental results show that ShadowRe-
boot shortened the downtime of commodity OS reboots on
Windows XP and five Linux distributions (Gentoo, Fedora,
Cent, Ubuntu, and SUSE) by 43 to 96%.

2. KEY OBSERVATIONS
In ShadowReboot, we exploit the file access patterns of

commodity OSes during their reboots in software updates.
We checked the directories and files accessed during the OS
reboots after software updates. To obtain the names, we
started monitoring the file accesses when an OS shutdown
operation is triggered after a software update is completed.
We continued to monitor the file accesses until the OS dis-
plays a login prompt. We ran Windows XP professional
edition (winxp) and five Linux distributions, Fedora Core
10 (fedora), Ubuntu 9.04 (ubuntu), Gentoo Linux 2007.0
(gentoo), CentOS 5.3 (cent), and OpenSUSE (suse). Their
configurations are in default. The updates conducted on
winxp include all the Windows updates for the service pack
3 that need reboots, which were announced before October
2010, and an Internet Explorer upgrade to version 8. For
the five Linux distributions, we applied a kernel patch to
each kernel.

The results on winxp show that it basically accesses the
same files and directories during the reboots. It frequently
accesses \WINDOWS\system32\ and \WINDOWS\ Fonts\
for restarting services. In the shutdown phases, winxp ac-
cesses \Program Files\ to stop applications. Since the Win-
dows Updates request an OS reboot during logging on, the

shutdown phases involve accessing the user setting files such
as \Document and Settings\username\NTLOGIN.DAT, and
\Document and Settings\username\NTLOGIN.LOG. Winxp
also stores the volume states in \System Volume Information\
for recovery. In the boot phases, winlogon.exe accesses \Docu-
ments and Settings, \Documents and Settings\NetworkService
and \Documents and Settings\LocalServices for a logon.
Winxp also sometimes accesses \WINDOWS\SoftwareDist-
ribution\ and \WINDOWS\LastGood.Tmp for unknown rea-
sons.

The results from the five Linux show that during each re-
boot all of them access the administrative files, but never
access the user files in /home. All the Linux distributions
frequently access files in /lib in their boot phase because al-
most all the daemon processes are linked to the glibc shared
library whose files are found in /lib/. In addtion, the files
in /etc are often accessed because the configuration files are
conventionally stored in /etc. Each Linux distribution con-
ducts slightly different file accesses due to the difference in
configurations of the daemon processes. For example, fe-
dora accesses /lib/libselinux.so, while gentoo does not. This
is because gentoo does not support the selinux service that
fedora does.

These results indicate that the commodity OSes during
their reboots access specific files and directories. They tend
to access files in administrative directories that cannot be
modified without administrative privileges. On the other
hand, almost all the files in user directories, such as \Documents
and Settings\username\My Documents and /home/users/
Desktop, are not accessed. The characteristics of the file
access patterns bring us to the following point; even if we
heavily modify the files in the user directories while the OS
is simultaneously rebooting, the modification does not inter-
fere with the reboot activity and vice versa. For example,
even if we run non-administrative tasks and an OS reboot
in parallel with a shared disk, the tasks’ activities do not
interfere with the OS reboot activity. This motivates us to
execute the users’ tasks and an OS reboot in parallel.

3. SHADOWREBOOT
ShadowReboot makes use of a system virtualization to

parallelly execute the users’ applications and an OS reboot.
ShadowReboot conducts an OS reboot in the background
by spawning a VM dedicated to an OS reboot, which is
appropriately called a reboot-dedicated VM . Since the OS
is rebooted on the reboot-dedicated VM, the user can con-
tinue to execute applications on the original VM. After the
OS reboot is complete, ShadowReboot takes a snapshot of
the reboot-dedicated VM. It enables the user to restore the
snapshot states at their convenience. Although the user ex-
periences some downtime during the restoration, it is shorter
than that of directly rebooting an OS on the original VM.

We also have to focus on restoring a snapshot from the
reboot-dedicated VM. ShadowReboot runs a pair of VMs:
the original and reboot-dedicated one. Since each VM has its
own file system and individual disk states, the file updates
of the two VMs are reflected on each virtual disk. Dur-
ing shadow rebooting, the users’ applications may issue file
writes to store their data on the virtual disk of the original
VM, while the files may be modified in the reboot-dedicated
VM. Since the state of the reboot-dedicated VM is restored,
the files updates issued on the original VM are discarded.
As a result, the user’s tasks may roll back to the point when

Start software update

Newer OS exectionOlder OS execution

2. Reboot OS running on
reboot-dedicated VM

Log-in Screen
Downtime

1. Spawn
reboot-dedicated VM

Devices/Processes shutdown
and booting up

Log-in Screen
appears

3. Take snapshot of
reboot-dedicated VM

4. Switch from VM to
snapshot state, keeping disk
consistency between original
and reboot-dedicated VM

Snapshot

VM

DowntimeReboot-term

Figure 1: Overview of ShadowReboot.

the reboot-dedicated VM was spawned. If the VM continues
to use the disks from the original VM after the restoration,
the disk contents updated on the reboot-dedicated VM are
discarded.

To successfully build a rebooted state that is consistent
with the users’ operations, we introduce the notion of reboot-
terms during which the users can modify their working direc-
tories specified in advance while not modifying the admin-
istrative directories. ShadowReboot performs the following
operation, exploiting the reboot-term. ShadowReboot starts
a reboot-term on the original VM when the reboot-dedicated
VM is spawned, and finishes it when the snapshot restora-
tion is complete. Although the users activities on the origi-
nal VM is limited since they cannot modify the administra-
tive directories, they can do non-administrative tasks such
as web browsing and e-mailing. Next, when we restore the
rebooted state, ShadowReboot keeps the directories speci-
fied as working directories on the original VM and restores
the other directories on the reboot-dedicated VM. By do-
ing so, ShadowReboot allows users to access the files that
the running processes, such as daemons, are based on. This
means that the constructed processes’ states are consistent
with the files on the disks.

An overview of ShadowReboot is shown in Figure 1. An
OS is rebooted on the reboot-dedicated VM after the soft-
ware updates are applied. When the reboot-dedicated VM
is spawned, ShadowReboot starts a reboot-term. After that,
we restore the directories specified as working directories on
the original VM and the other directories on the reboot-
dedicated VM. Through these operations, ShadowReboot
provides the users the illusion that a guest OS travels for-
ward in time to the rebooted state where the updated kernel
and applications are ready for use.

4. DESIGN
Several questions are posed while designing ShadowRe-

boot, such as (1) how can we efficiently spawn a reboot-
dedicated VM, (2) how can we appropriately restore direc-
tories from the original and reboot-dedicated VM, (3) how
do we check whether or not ShadowReboot successfully cre-
ate the rebooted state. We answer them in this section.

4.1 VM Fork
We need an efficient way to create a reboot-dedicated VM.

A naive approach to creating a reboot-dedicated VM is to
run a new VM instance with the same configuration as the
original VM. However, at every announcement of a software

update, we have to create a new VM instance, copy the
image of the VM, boot an OS, perform the software update,
and conduct an OS reboot. This is tedious, and thus, may
fail to encourage users to update their software.

To efficiently create a reboot-dedicated VM, we introduce
a VM fork that forks a running VM, borrowing an idea from
the existing literature [5, 9]. The semantics of the VM fork
are similar to those of the familiar process fork; users issue a
fork call to the VMM that creates a child VM. The child VM
inherits the runtime state of the parent VM such as mem-
ory and registers. In addition, it proceeds with an identical
view of the system. The child VM has its own independent
copy of the OS, virtual disk, network interface card (NIC),
and snapshot. The state updates of the child VM are not
propagated to the parent.

To reclaim the memory pages for a child VM execution,
we make use of a page sharing mechanism running inside
the VMM to produce behavior like memory ballooning. This
page sharing mechanism allows one physical page to be shared
with several virtual pages whose contents are the same. If
there are not enough memory pages to run a reboot-dedicated
VM, we run a process on the original VM that fills its mem-
ory region with the same data. The page sharing mechanism
reclaims the memory pages of the process, which means the
number of free memory pages increased. By doing so, we can
reclaim the memory pages for a child VM without needing
kernel modules such as a balloon driver.

4.2 Unrollback Virtual Disk
To keep the disk updates on the original VM in restor-

ing the rebooted state of reboot-dedicated VM, we make
use of an unrollback virtual disk that is independent of a
snapshot restoration function. Unlike normal virtual disks,
unrollback virtual disks do not roll back even if the VM is
restored to a snapshot. By leveraging the unrollback virtual
disks, we can keep the files and directories on the original
VM after the restoration. While the guest OS is rebooting
on the reboot-dedicated VM, we save the computational ac-
tivities into the file system on the unrollback virtual disks.
After the original VM has been restored to a snapshot of
the reboot-dedicated VM, we can access the saved contents
by mounting the target partitions in the unrollback virtual
disks connected to the original VM since the state of the un-
rollback virtual disk is not affected by the restore operation.

A typical system configuration of Linux systems is that the
mount point of the working directory (/home/users/work) is
assigned to the unrollback virtual disk and the other directo-
ries’ mount points are assigned to standard virtual disks. We

shadow-reboot the VM after updating the software. Daemon
processes become available for use based on their configura-
tion files put on the administrative directories such as /etc
on the reboot-dedicated VM, while we execute our compu-
tational tasks on the original VM, such as web browsing, e-
mailing, and word processing. When we restore the rebooted
state of the reboot-dedicated VM, the /home/users/work di-
rectory is not restored because its mount point is assigned to
the unrollback virtual disk. As a result, the built VM pro-
vides the /home/users/work directory of the original VM
and the other directories of the reboot-dedicated VM. This
indicates that we can successfully preserve the disk updates
in the user directories on the original VM and keep the dae-
mons states that are consistent with the files in the admin-
istrative directories.

In a way that is similar to that in unrollback virtual disks,
some approaches can protect the files and directories from
snapshot restoring. We can protect them by using an addi-
tional VM on which an NFS server is running. The files and
directories put on the NFS server are not affected by the
snapshot restoration. However, in this approach, we have
to set up a VM and experience network virtualization over-
head that tends to cause a large performance penalty. We
can also protect the files and directories by sharing them
with the host OS. Although they are not rolled back by the
snapshot restoration, the users sometimes want isolation be-
tween the VMs and the host to protect the host against VMs
compromised by viruses or attackers.

4.3 File Access Monitor
It is helpful to prepare a mechanism that checks whether

ShadowReboot successfully creates a rebooted state. Since
administrative directories are restored from the reboot-dedicated
VM, ShadowReboot naturally cancels any updates to the
directories on the original VM during the OS reboots on
the reboot-dedicated VM. On the other hand, ShadowRe-
boot also discards the updates to working directories on the
reboot-dedicated VM because they are restored from the
original VM. If we do not detect any updates that violate
the constraints of the reboot-terms, we fail to systematically
create a consistent rebooted state; on the restored VM, the
running processes’ states are inconsistent with the files in
the disk and/or the updates to the working directories are
discarded.

To check whether ShadowReboot successfully creates a
rebooted state, we prepare two processes. One monitors the
access to the working directories on the reboot-dedicated
VM. The other monitors the access to the administrative
directories on the original VM. We can implement such
processes by using a file monitoring mechanism such as a
filter driver or i-notify. When the update is detected on
either VM, the process tells it the user and recommends to
conduct a normal OS reboot. We are now implementing this
feature on Linux and Windows.

5. PRELIMINARY EXPERIMENTS
We are implementing a prototype in VirtualBox 3.0.8 OSE.

We performed a preliminary experiment to examine the ba-
sic performance of ShadowReboot. The experiments de-
scribed in this section are conducted on a DELL OptiPlex
780DT with a 3 GHz Core 2 Duo processor with 4 G of mem-
ory and a 160 GB SATA disk. Our prototype is running on
this machine, where Linux 2.6.34 is also running.

To confirm ShadowReboot successfully manages the down-
time of OS reboot, we compared the downtime of Shad-
owReboot and normal OS reboots. Our prototype causes
downtime at two points. One point is when a VM fork is
invoked and the other is when a snapshot of a rebooted
state is restored. We measured the downtime caused by VM
forks and snapshot restorations. We regard the sum of the
two downtime as the ShadowReboot downtime. We used six
commodity OSes (fedora, ubuntu, gentoo, cent, suse, and
winxp) as our guest OSes, which were described in Section 2.
Each VM is assigned one VCPU and is connected to a 20
GB normal virtual disk and a 10 GB unrollback virtual disk
as a primary master and slave respectively. We varied the
VM memory size to 256, 512, 1024, 2048 and 2560 MB. The
maximum memory size the VirtualBox can assign on our
environment is 2560 MB. The measurement was performed
using the five Linux distributions and winxp.

Table 1 lists the downtime of ShadowReboot (SR) and
normal OS reboots (NR). The results show that the down-
time of ShadowReboot is shorter than that of normal OS
reboots. For example, the downtime of ShadowReboot at
256 MB is 96.6% shorter than that of the normal OS reboot
in cent. Even in winxp, the downtime of ShadowReboot is
71.9% shorter than that of the normal OS reboot. When we
used 2560 MB of memory, the downtime of ShadowReboot is
1.97 seconds in gentoo, while that of the normal OS reboot
is 58.21 seconds. Although the ShadowReboot downtime is
about 10 seconds in winxp, it is 43.4% shorter than that of
the normal OS reboot.

Table 1 also lists the downtime of VM forks and the restor-
ing snapshots of the reboot-dedicated VMs. The downtime
of VM forks is different in these cases. Since our proto-
type simply uses the snapshot functionality to fork a VM,
the downtime is equal to the downtime of taking snapshots.
In VirtualBox, longer downtime when taking snapshots is
incurred since it saves all the physical pages allocated by
the VMM. For example, the VM fork in gentoo stops the
VM for 0.55 seconds even when the VM is assigned 2560
MB. This is because gentoo does not aggressively utilize
the memory, just after a log-in. On the other hand, the VM
fork downtime in winxp is 8.10 seconds at 2560 MB. Winxp

accesses all the pages due to its mysterious behavior, which
forces the VirtualBox to assign the VM memory pages.

The downtime of restoring a rebooted state also tends to
be stable even if the memory size is varied, except for cent

and suse. In VirtualBox, the downtime of restoring a snap-
shot depends on how much memory a guest OS uses. In
cent and suse, their daemons use the memory in their boot
phase, taking the memory size of the machine into consider-
ation. For example, readahead_early warms the file cache
by accessing the files that are frequently used. Although
Windows is equipped with such a feature, we were able to
take a snapshot before it runs.

6. RELATED WORK
Using dynamic updatable kernels is an effective way to ap-

ply patches to the kernels at runtime so that we do not need
to conduct an OS reboot [1, 7, 3, 4, 2, 8]. Ksplice [1] dy-
namically translates the function code at a safe time when no
thread’s instruction pointer falls within that function’s text
and when no thread’s kernel stack contains a return address
within that function’s text. Ksplice is designed to manipu-
late the text region, not to handle the memory objects in the

Table 1: Downtime of ShadowReboot and normal OS reboot.

Memory size
fedora (second) ubuntu (second) gentoo (second)

SR
NR

SR
NR

SR
NR

VM fork Restore Total VM fork Restore Total VM fork Restore Total

256 MB 2.19 2.49 4.68 42.23 2.16 2.43 4.59 27.47 0.42 1.38 1.90 55.39
512 MB 2.52 2.56 5.08 42.80 2.38 2.41 4.79 27.63 0.47 1.43 1.90 54.89
1024 MB 2.61 2.38 4.99 44.55 2.36 2.46 4.82 39.61 0.48 1.38 1.86 57.82
2048 MB 2.73 2.37 5.10 45.03 2.71 2.53 5.12 43.64 0.53 1.43 1.96 58.17
2560 MB 2.74 2.39 5.03 45.04 5.27 2.78 2.49 45.49 0.55 1.42 1.97 58.21

cent (second) suse (second) winxp (second)
SR

NR
SR

NR
SR

NR
VM fork Restore Total VM fork Restore Total VM fork Restore Total

2.32 2.42 4.74 141.11 2.26 3.16 5.42 30.95 1.60 2.30 3.90 13.88
3.72 3.32 7.04 154.09 3.71 4.86 8.57 30.71 2.39 2.38 4.77 13.73
3.75 3.20 6.95 132.84 4.11 5.12 9.23 43.29 6.28 3.83 2.45 16.67
3.79 3.15 6.94 142.83 4.00 5.29 9.29 56.24 6.67 2.32 8.99 18.42
3.86 3.35 7.21 132.05 4.46 5.22 9.68 55.99 10.41 8.10 2.31 18.38

kernel heap region. Additionally, this approach cannot up-
date the non-quiescent kernel functions that are always on
the call stack of some kernel threads. These approaches also
do not manage the system configuration changes and shared
component updates because the running processes are not
restarted. We can complementarily use ShadowReboot to
handle such updates with shorter downtime.

Some approaches require the development of special patches
from the original ones. LUCOS [3] forces users to implement
new functions that can handle the kernel memory objects
to keep them consistent before and after the translation.
In DynAMOS [7], users have to investigate how the target
functions are used by the kernel threads and implement a
routine that consistently updates them. ShadowReboot does
not need to perform such tedious tasks.

There are approaches that involve paying the high engi-
neering cost of redesigning and modifying a large part of the
kernels. To use K42’s techniques [4, 2, 8] on commodity OS
kernels, we have to redesign the target kernels in an object-
oriented manner. Modifying commodity OS kernels is of-
ten difficult because recent kernels are complex and some of
them are closed-source and/or proprietary. ShadowReboot
does not require any modification of the OS kernels.

MicroVisor [6] conducts a process migration between two
VMs connected to a shared network storage, such as an NFS
server and a SAN. An administrator runs the applications
in one VM and maintains the kernel in the other. When
the maintenance has finished, the applications running on
the older kernel in the first VM are migrated to the newer
kernel in the second VM. Finally, the first VM is discarded.
Although these approaches successfully hide the downtime
of the kernel maintenance, the process migration is unsuit-
able for system configuration changes and shared compo-
nents updates. Since migrated processes are running with
the configuration of the older OS, their states remain older
on the newer OS. An administrator has to carefully choose
the processes that can be migrated to avoid a configura-
tion mismatch of the processes between the older and newer
OSes, based on which configuration or component is up-
dated. ShadowReboot systematically provides users a con-
sistent system state by introducing the reboot-terms.

7. CONCLUSION AND FUTURE WORK
This paper described ShadowReboot, a VMM-based ap-

proach that shortens the downtime of OS reboots for soft-
ware updates. ShadowReboot provides the illusion that a

guest OS travels forward in time to the rebooted state where
the updated kernel and applications are ready for use.

We need to implement a file access monitor to guarantee
that ShadowReboot successfully creates a rebooted state.
After that, we conduct experiments to confirm that Shad-
owReboot can successfully update the commodity OSes with
shorter downtime. We also explore ways to schedule a reboot-
dedicated VM to prevent it from severely interfering with the
users computational tasks on the original VM.

8. REFERENCES
[1] J. Arnold and M. F. Kaashoek. Ksplice: Automatic

rebootless kernel updates. In Proc. of the 4th ACM
European Conf. on Computer Systems, Apr. 2009.

[2] A. Baumann, J. Appavoo, R. W. Wisniewski, D. D. Silva,
O. Krieger, and G. Heiser. Reboots are for hardware:
Challenges and solutions to updating an operating system
on the fly. In Proc. of the USENIX Annual Technical Conf.,
Jun. 2007.

[3] H. Chen, R. Chen, F. Zhang, B. Zang, and P.-C. Yew. Live
Updating Operating Systems Using Virtualization. In Proc.
of the 2nd ACM Int’l Conf. on Virtual Execution
Environments, Jun. 2006.

[4] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski,
J. Xenidis, D. D. Silva, M. Ostrowski, J. Appavoo,
M. Butrico, M. Mergen, A. Waterland, and V. Uhlig. K42:
Building a Complete Operating System. In Proc. of the 1st
ACM European Conf. on Computer Systems, Apr. 2006.

[5] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno, and
M. Satyanarayanan. Snowflock: Rapid virtual machine
cloning for could computing. In Proc. of the 4th ACM
European Conf. on Computer Systems, Apr. 2009.

[6] D. E. Lowell, Y. Saito, and E. J. Samberg. Devirtualizable
virtual machines enabling general, single-node, online
maintenance. In Proc. of the 11th ACM Int’l Conf. on
Architectural Support for Programming Languages and
Operating Systems, Oct. 2004.

[7] K. Makris and K. D. Ryu. Dynamic and Adaptive Updates
of Non-Quiescent Subsystems in Commodity Operating
System Kernels. In Proc. of the 2nd ACM European Conf.
on Computer Systems, Mar. 2007.

[8] C. A. N. Soules, J. Appavoo, K. Hui, R. W. Wisniewski,
D. D. Silva, G. R. Ganger, O. Krieger, M. Stumm,
M. Auslander, M. Ostrowski, B. Rosenburg, and J. Xenidis.
System Support for Online Reconfiguration. In Proc. of the
USENIX Annual Technical Conf., Jun. 2003.

[9] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft,
A. Snoeren, G. Voelker, and S. Savage. Scalability, Fidelity,
and Containment in the Potemkin Virtual Honeyfarm. In
Proc. of the 20th ACM Symp. on Operating Systems
Principles, Oct. 2005.

