
A Case for RDMA in Clouds:
Turning Supercomputer Networking into Commodity

Animesh Trivedi
IBM Research

Saeumerstrasse 4
Rueschlikon, Switzerland
atr@zurich.ibm.com

Bernard Metzler
IBM Research

Saeumerstrasse 4
Rueschlikon, Switzerland
bmt@zurich.ibm.com

Patrick Stuedi
IBM Research

Saeumerstrasse 4
Rueschlikon, Switzerland
stu@zurich.ibm.com

ABSTRACT
Modern cloud computing infrastructures are steadily push-
ing the performance of their network stacks. At the hardware-
level, already some cloud providers have upgraded parts of
their network to 10GbE. At the same time there is a con-
tinuous effort within the cloud community to improve the
network performance inside the virtualization layers. The
low-latency/high-throughput properties of those network in-
terfaces are not only opening the cloud for HPC applica-
tions, they will also be well received by traditional large
scale web applications or data processing frameworks. How-
ever, as commodity networks get faster the burden on the
end hosts increases. Inefficient memory copying in socket-
based networking takes up a significant fraction of the end-
to-end latency and also creates serious CPU load on the
host machine. Years ago, the supercomputing community
has developed RDMA network stacks like Infiniband that
offer both low end-to-end latency as well as a low CPU foot-
print. While adopting RDMA to the commodity cloud en-
vironment is difficult (costly, requires special hardware) we
argue in this paper that most of the benefits of RDMA can
in fact be provided in software. To demonstrate our find-
ings we have implemented and evaluated a prototype of a
software-based RDMA stack. Our results, when compared
to a socket/TCP approach (with TCP receive copy offload)
show significant reduction in end-to-end latencies for mes-
sages greater than modest 64kB and reduction of CPU load
(w/o TCP receive copy offload) for better efficiency while
saturating the 10Gbit/s link.

Categories and Subject Descriptors
C.2.5 [Local and Wide-Area Networks]: Ethernet; D.4.4
[Communications Management]: Network communica-
tion—RDMA, Efficient data transfer, performance measure-
ment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APSys ’11 Shanghai, China
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

General Terms
Design, Measurement, Performance

Keywords
RDMA, Commodity Clouds, Ethernet Networking

1. INTRODUCTION
Applications running in today’s cloud computing infras-

tructures are increasingly making high demands on the net-
work layer. To support current data-intensive applications,
terabytes worth of data is moved everyday among the servers
inside a data center requiring high network throughput. For
large scale web applications like Facebook low data access
latencies are key to provide a responsive interactive experi-
ence to users [4]. And recently there have been cases running
HPC workload inside scalable commodity cloud strengthen-
ing the need for a high performance network stack further 1.
To accommodate those requirements modern cloud infras-
tructures are continuously pushing the performance of their
network stack. Most of the work focuses on improving the
network performance inside the virtualization layers [14, 21].
In parallel some cloud providers have upgraded parts of the
networking hardware to 10GbE which recently has moved
closer to the price range acceptable for commodity clouds.

While high network performance is greatly desired, it also
increases the burden for end hosts. This is especially true for
applications relying on standard TCP sockets as their com-
munication abstraction. With raw link speeds of 10Gbit/s,
protocol processing inside the TCP stack can consume a sig-
nificant amount of CPU cycles and also increases the end-
to-end latency perceived by the application. A large part
of the inefficiency stems from unnecessary copying of data
inside the OS kernel [3]. The increased CPU load is particu-
larly problematic as parallelizing the network stack remains
challenging [25].

High performance networks are state of the art in super-
computers since a long time. For instance, the Remote Di-
rect Memory Access (RDMA) network stack provides low-
latency/high-throughput with a small CPU footprint. This
is achieved in RDMA mainly by omitting intermediate data
copies and offloading the protocol processing to hardware [16].
Adopting RDMA by commodity clouds is, however, difficult
due to cost and special hardware requirements. In this pa-
per we argue that the basic concept and the semantics of
RDMA can be beneficial for modern cloud infrastructures

1http://aws.amazon.com/hpc-applications/

as the raw network speed increases, and – most importantly
– that RDMA network support can efficiently be provided
in pure software, without a need for special hardware. To
demonstrate our findings we have developed SoftiWARP, a
software-based RDMA stack. We have evaluated our stack
against a socket-based approach and show that SoftiWARP
provides high-performance network I/O with reduced CPU
load and significantly lower end-to-end-latencies for reason-
ably large message sizes.

2. REVISITING SUPERCOMPUTER NET-
WORKING

Supercomputers are designed to run specialized workloads
and are built using customized hardware and interconnects.
The type of workload running on supercomputers, e.g. MPI-
based data processing, requires super-fast and efficient net-
work I/O to shuffle data across the interconnects. At a first
glance, it seems apparent that the requirements faced by su-
percomputers in the past resemble the ones of future com-
modity data centers. Thus, a natural next step would be to
look at the network stack operated by supercomputers and
see if a similar approach could be beneficial for data centers
as well. RDMA is one networking technology used by super-
computers. RDMA enables applications to have high band-
width and low latency access to data by efficiently moving
data between application buffers. It is built upon the user-
level networking concept and separates data from the control
path, as only the latter requires host OS involvement. An
important aspect of RDMA when compared to socket-based
networking is that RDMA has rich asynchronous communi-
cation semantics, that helps in overlapping communication
with computation for better resource utilization.

2.1 Commodity Clouds and RDMA
Clouds run on data centers built from commodity hard-

ware and perform on-demand, flexible and scalable resource
allocation for the applications. Resource utilization becomes
an important factor to cloud efficiency because hardware re-
sources (e.g. CPU, memory, and networks) are being mul-
tiplexed among many virtual machines. Due to the econ-
omy of scale, inefficiencies in resource usage can potentially
eclipse large gains from the clouds. In the following we look
at CPU usage, latency and energy consumption in data cen-
ters and discuss how RDMA can improve the performance
in those cases.
CPU Usage: Network I/O can cost a lot of CPU cycles [3].
Applications in clouds require better support from the OS to
efficiently transfer large quantities of data. RDMA-enabled
NICs (RNICs) have sufficient information to completely by-
pass the host OS and directly move data between application
buffers and the network without any intermediate copies.
This requires considerably lower CPU involvement and frees
up CPU cycles for productive application processing.
Latency: Low data access latencies are key for large-scale
web applications like Twitter or Facebook in order to provide
sufficient responsiveness to user interactions [20]. Low data
access latencies also play an important role in determining
which consistency model a cloud storage layer can possibly
implement [23]. And finally, absence of timely access to the
data may render certain applications inefficient and cause
a loss of productivity. RDMA helps in reducing end-to-end
application latencies as it does not require local or remote

applications to be scheduled during network transfers. As
a consequence RDMA also is minimizing the penalty for
processor state pollution such as cache flushes.
Energy: The energy consumption of commodity data cen-
ters have been alarming [2]. Future cloud infrastructures
need to squeeze more performance per Watt. Because of an
efficient data movement pattern on the memory bus (zero-
copy), less application involvement, and low OS overhead,
RDMA data transfers are more energy efficient than tradi-
tional socket based transfers [12].

2.2 Challenges for RDMA in Clouds
Although promising, RDMA has neither extensive end-

user experience and expertise nor widespread deployment
outside the HPC world. We point out three major chal-
lenges in deploying RDMA hardware in commodity cloud
infrastructure.

First, to efficiently move data between NIC and applica-
tion buffers, current RDMA technology offloads the trans-
port stack. The issues related to integration of stateful
offload NICs in mature operating systems are well docu-
mented [16]. These problems include: consistently main-
taining shared protocol resources such as port space, rout-
ing tables or protocol statistics, scalability, security and bug
fixing issues etc.

Second, clouds run on commodity data centers. Deploy-
ing RDMA in such an environment might be expensive.
RDMA requires special adapters with offload capabilities
like RNICs. The usability of those adapters, however, is
limited to a couple of years at best since processor and soft-
ware advancements are catching up rapidly.

Third, RDMA technology has often been criticized for
its complex and inflexible host resource management [10].
RDMA applications are required to be completely aware
of their resource needs. System resources such as memory,
queue pairs etc. are then statically committed on connec-
tion initialization. This goes against the cloud philosophy
of flexible and on-demand resource allocation.

3. RDMA IN SOFTWARE
Despite challenges we argue that a major subset of RDMA

benefits still can be provided to commodity data center envi-
ronment using only software-based stacks. In this section we
present a case for the software-based RDMA stack, discuss
its advantages, and why it is a good match for the clouds.

First, there are currently several networks stacks sup-
porting RDMA communications semantics. iWARP [11]
(Internet Wide Area RDMA Protocol) being one of them,
enables RDMA transport on IP networks. In contrast to
other RDMA stacks like Infiniband, iWARP uses TCP/IP or
SCTP/IP as end-to-end transport. This enables RDMA on
the ubiquitous Ethernet infrastructure typical to commod-
ity data centers and opens the door to inexpensive, Internet-
wide and pure software-based implementations.

Second, we believe that the availability of sufficient ap-
plication specific knowledge (passed using the RDMA API)
during network protocol processing can single-handedly boost
efficiency [6], obsoleting offloading in many cases. The rich
RDMA API supports one-sided pull/push operations, se-
mantic aggregation of operations, grouping of work postings,
and completion notifications etc. Using this knowledge with
modest support from the OS, goals of the RDMA stack such
as zero copy transmission, direct data placement into appli-

cation’s buffer, and one-sided operations are possible even
in a software-based solution. This results in better end-to-
end latencies, and low CPU footprint in the commodity data
centers.

Third, with its flexible resource management policies, a
software-based solution is matching closely with the require-
ments of the cloud. It also helps in materializing on-demand
RDMA networks between hosts. While dynamically man-
aging resources can result in some performance loss, appli-
cations can amortize this cost up-to an extend by reusing
I/O critical resources such as memory regions. Please note
that raw performance is not the primary concern for such
a software-based stack. It can not outperform a hardware
based solution but still can provide a large subset of RDMA
benefits in pure software.

3.1 SoftiWARP
We have implemented the iWARP protocol in a software

stack for Linux called SoftiWARP [15]. SoftiWARP enables
commodity Ethernet NICs to handle RDMA traffic in soft-
ware. It aims to provide the benefits of rich RDMA se-
mantics, while avoiding most of the problems with TOEs or
RNIC deployment. By integrating transparently within in-
dustry standard OFED stack [18], SoftiWARP appears to
the application as a regular RNIC device. It also inter-
operates with available RNIC hardware such as the Chelsio
T3 adapters.

3.1.1 Comparing SoftiWARP with plain TCP
Historically, TCP implementations have been closely as-

sociated with the BSD socket interface. The socket API
abstracts all protocol details and exports a simple send and
receive interface for data transfer. From an applications
perspective, all additional communication semantics must
be a part of the application itself. With this most of the
data path optimizations RDMA is focusing on are not con-
sistently achievable, despite some attempts to augment the
OS networking stack with shortcuts depending on implicit
state information(e.g. [5]). In this section we highlight the
advantages RDMA brings to applications and compare it to
socket based TCP network I/O operations:

Application Data Copy Avoidance: To preserve system
call semantics, the socket interface must copy application
data between user space and kernel. The RDMA API helps
to avoid copy operations on the transmit path by explicitly
passing buffer ownership when posting a work request. Any
sending or retransmission of data can be done directly from
the user buffer. However using kernel TCP sockets, the cur-
rent SoftiWARP implementation does not explicitly know
when data is finally delivered to the peer and restricts zero
copy to process a non-signaled work. A simple check of TCP
send state information would be sufficient to appropriately
delay work completion generation.

Less Application Scheduling: With the necessary data
placement information known, SoftiWARP places data di-
rectly into user’s buffers from the TCP receive softirq pro-
cessing context. Also, while processing one-sided operations,
it does not schedule the application for network I/O. These
characteristics are particularly attractive for applications
such as media streaming, CDNs, distributed data storage
and processing etc. Furthermore, work completion process-
ing is minimized to the application needs – completing non-
signaled work will not trigger application scheduling.

Figure 1: Receive efficiency of TCP w/o receive copy
offloading and SoftiWARP

Non-blocking Operations: The asynchronous application
interface frees applications from blocking and waits on data
send or receive operations to complete. If semantically needed,
the application may still do a blocking wait for completion.

Flexible Memory Management: User buffer pinning in
memory is inevitable for hardware RDMA implementations [10].
However a software based in-kernel RDMA implementation
has flexibility of performing on-demand buffer pinning, once
source or sink address and data length is known. This puts
memory resource economics on par with kernel TCP stack,
though it may result in some performance loss.

3.1.2 SoftiWARP and RNICs:
Looking beyond the context of this paper, SoftiWARP will

likely not replace RNICs on given installations. It will also
not obsolete their applicability on high-end server systems
or if very low delay requirements are stringent. Rather, it
enables RDMA communication on any commodity system.
Heterogeneous setups, deploying RNICs on the server side
and running a software RDMA stack on the typically less
loaded client, are thus made possible.

4. PERFORMANCE
In this section we will give some early performance results

for SoftiWARP. The numbers reported are average of 3 runs,
each lasting 60 seconds. The experiments were run on iden-
tical IBM1 HS22 blades containing dual Quadcore 2.5 GHz
Intel Xeon CPUs (E554), 8GB RAM and connected using
Mellanox ConnectX 10GbE adapters. All experiments were
done on Linux (2.6.36) using netperf [17] with our exten-
sions for RDMA tests and oprofile [19]. We plan to open
source these extensions which consist of uni-directional data
transfer tests. To obtain CPU usage, we divided the to-
tal number of CPU samples obtained during a benchmark
run by the number of samples obtained when we ran a busy
loop on a single CPU. Hence they include the overhead of
buffer allocation and page pinning for the RDMA. We re-
port two variants of TCP performance, with and without
TCP receive copy offload using Intel QuickData [1]technol-
ogy in Linux(CONFIG_NET_DMA). Although helpful with the
CPU usage for small size messages, in our experiments we
have found TCP receive copy offloading to be major source
of performance degradation for the large message sizes.

Figure 2: Round trip latencies for TCP request response and RDMA read a) 100-1000kB, b) 20-200MB data
blocks

Bandwidth: SoftiWARP does not impose any performance
penalty for large buffer sizes. Compared to TCP’s buffer
size of 2kB, SoftiWARP achieves full line speed with buffer
sizes of 16kB and 32kB for RDMA Write and Read tests
respectively (not shown in the paper). If aggregate buffer
posting using multiple work elements (100) is performed, it
saturates the link with message sizes of 8kB and 16kB for
RDMA Write and Read tests respectively. We are working
on optimizing SoftiWARP’s performance for transmitting
small buffer sizes.
CPU Efficiency: SoftiWARP is very economical with the
CPU cycles. By using zero copy mechanism on the transmit
side, SoftiWARP’s CPU usage for non-signaled workloads is
approximately 40%-45% (not shown), which is less than a
send call and at par with TCP sendpage mechanism. How-
ever for, small buffer size (less than 64kB) send is more effi-
cient. On the receiving side SoftiWARP consumes 8%-22%
less CPU than TCP while receiving at the full link speed.
Figure 1 shows the receive side efficiency of SoftiWARP and
TCP (w/o TCP receive copy offload) in terms of Gbits re-
ceived per GHz of CPU use. Beyond a modest 16kB (64kB
for reads), SoftiWARP’s receive is more efficient than the
TCP receive.
Latency: The latency experiment consists of a request (4
bytes) and response (variable, asked size) system. Figure 2
shows end-to-end delay of a request with the CPU usage
on the receiving side. For small requests (in kBs), TCP
copy offloading saves significant CPU cycles (13%-27% com-
pared to the non-offloaded version) but it results in a non-
negligible performance penalty for the end-to-end latencies.
SoftiWARP offers 11%-15% (for 100kB-1000kB range) and a
significant 5%-67% (20MB-200MB range) reduction in end-
to-end application latencies over TCP (copy offloaded ver-
sion). However without TCP receive copy offloading, the
performance gap closes at a cost of higher CPU usage (5%-
18%). On the response transmitting side by using in-kernel
sendpage mechanism for already pinned pages, SoftiWARP
improves the CPU usage by 34%-50% (not shown) against
TCP.

The CPU and performance gains are primarily achieved
by avoiding application involvement and exploiting zero copy

mechanism for the transmission. We will provide an in
depth-analysis of the system in future.

5. RELATED WORK
iWARP is built upon the Virtual Interface Architecture

(VIA) concept, which has roots in systems such as U-Net [24],
Hamlyn [8], ADC [9], Typhoon [22] etc. Although these sys-
tems helped in developing the key principles behind iWARP
and RDMA, but in the absence of any standardization work
lead to multiple ad-hoc implementations of application and
network interfaces. SoftiWARP is an effort to find a golden
middle ground between trivial read/write system calls on
sockets and exotic user-accessible network interface exports.

Unlike true user-level networking systems, SoftiWARP does
not run the network stack in user space. Networking remains
to be a service of the OS but user-tailored. SoftiWARP uses
application specific knowledge, which is available through
rich RDMA API, to make efficient use of resources. Also,
giving resource control to the kernel instantiates its status
as a resource arbitrator that helps in imposing global poli-
cies [13]. The Ohio Supercomputer Center has presented
another kernel based iWARP implementation [7]. Their
system, however, is not compatible with the OFED frame-
work.

6. CONCLUSION
With the availability of 10Gbit/s Ethernet for commodity

data centers and the ever increasing demand of distributed
applications for efficient inter-node network I/O, network
stacks are challenged to keep up with the pace. In this pa-
per, we argue that traditional socket-based networking is
not capable of satisfying those future demands, as it puts
too big of a burden onto the host. Instead we propose
the use of RDMA as a networking concept to overcome
those issues. RDMA traditionally has been used as a high-
performance networking technology in supercomputers, but
they are costly and require special hardware which makes
them difficult to be adopted by commodity data centers.
However, we believe that the main advantages of RDMA
can be provided in pure software inside commodity data cen-

ters. In the paper, we discuss an early implementation of a
software-based RDMA solution and present experimental re-
sults. The results confirm the high-throughput performance
of such approach while significantly reducing end-to-end ap-
plication latencies than plain socket based TCP/IP.

In the future we plan to investigate potential performance
benefits of SoftiWARP in the presence of OS and application
level virtualization. SoftiWARP integrates seamlessly with
asynchronous communication APIs found in, e.g., Java NIO,
and may allow to efficiently bypass virtual layers down to
the hypervisor.

SoftiWARP is an open source project and the code is avail-
able at www.gitorious.org/softiwarp.

7. REFERENCES
[1] Intel Corporation. Intel QuickData Technology

Software Guide for Linux* at
http://www.intel.com/technology/quickdata/

whitepapers/sw_guide_linux.pdf, 2008.

[2] D. G. Andersen et al. FAWN: A fast array of wimpy
nodes. In Proceedings of the ACM SOSP, pages 1–14,
2009.

[3] P. Balaji. Sockets vs RDMA interface over 10-gigabit
networks: An in-depth analysis of the memory traffic
bottleneck. In Proceedings of RAIT workshop, 2004.

[4] D. Beaver et al. Finding a needle in haystack:
facebook’s photo storage. In Proceedings of the 9th
OSDI, pages 1–8, 2010.

[5] H.-k. J. Chu. Zero-copy TCP in Solaris. In ATEC ’96:
Proceedings of the 1996 USENIX ATC, pages 21–21,
1996.

[6] D. D. Clark et al. Architectural considerations for a
new generation of protocols. In Proceedings of ACM
SIGCOMM, pages 200–208, 1990.

[7] D. Dalessandro et al. Design and implementation of
the iwarp protocol in software. In Proceedings of
IASTED, pages 471–476, 2005.

[8] G. B. David et al. Hamlyn: a high-performance
network interface with sender-based memory
management. In Proceedings of the Hot Interconnects
III Symposium, 1995.

[9] P. Druschel et al. Experiences with a high-speed
network adaptor: a software perspective. In
Proceedings of ACM SIGCOMM, pages 2–13, 1994.

[10] P. W. Frey and G. Alonso. Minimizing the hidden cost
of RDMA. In Proceedings of ICDCS, pages 553–560.
IEEE Computer Society, 2009.

[11] IETF. Remote direct data placement working group.
http://datatracker.ietf.org/wg/rddp/charter/.

[12] J. Liu et al. Evaluating high performance
communication: A power perspective. In Proceedings
of the 23rd ICS, pages 326–337, 2009.

[13] K. Magoutis. The case against user-level networking.
In Proceedings of 3rd Workshop on Novel Uses of
System Area Networks, 2004.

[14] A. Menon et al. Optimizing network virtualization in
xen. In Proceedings of the USENIX ATC, pages 2–2,
2006.

[15] B. Metzler, P. Frey, and A. Trivedi. SoftiWARP -
Project Update, 2010. Available online at http://

www.openfabrics.org/OFA-Events-sonoma2010.html.

[16] J. C. Mogul. TCP offload is a dumb idea whose time
has come. In Proceedings of the 9th HotOS, pages 1–5,
2003.

[17] Netperf, 2.4.5. http://www.netperf.org/netperf/,
2011.

[18] OpenFabric Alliance. OpenFabrics Enterprise
Distribution (OFED) Stack, 2010. Available online at
www.openfabrics.org.

[19] Oprofile, 0.9.6. http://oprofile.sourceforge.net,
2011.

[20] J. K. Ousterhout et al. The case for RAMClouds:
Scalable high-performance storage entirely in DRAM.
In SIGOPS OSR. Stanford InfoLab, 2009.

[21] K. K. Ram et al. Achieving 10 Gb/s using safe and
transparent network interface virtualization. In
Proceedings of the 2009 ACM SIGPLAN/SIGOPS
VEE, pages 61–70, 2009.

[22] S. K. Reinhardt et al. Tempest and typhoon:
user-level shared memory. In Proceedings of the 21st
annual international symposium on Computer
architecture, pages 325–336, 1994.

[23] B. Tiwana et al. Location, location, location!:
modeling data proximity in the cloud. In Proceedings
of the 9th ACM SIGCOMM HotNets, pages 15:1–15:6,
2010.

[24] T. von Eicken et al. U-Net: a user-level network
interface for parallel and distributed computing. In
Proceedings of the 15th ACM SOSP, pages 40–53,
1995.

[25] P. Willmann et al. An evaluation of network stack
parallelization strategies in modern operating systems.
In Proceedings of the USENIX ATC, pages 8–8, 2006.

Notes
1IBM is a trademark of International Business Machines

Corporation, registered in many jurisdictions worldwide. In-
tel is a registered trademark of Intel Corporation or its sub-
sidiaries in the United States and other countries. Other
product and service names might be trademarks of IBM or
other companies.

