SLIM: Mmap from the Cloud to Device, and Back

Jinghao Shic Mingyuan Xiat

Ming Wu?#

Lintao Zhang* Zheng Zhangt

° University of Science and Technology of China T McGill University, Canada * Microsoft Research Asia
jhshi89@gmail.com mingyuan.xia@mail.mcgill.ca
{miw,lintaoz,zzhang}@microsoft.com

ABSTRACT

In the era of cloud computing, mobile applications often need to
leverage a new storage hierarchy that includes not only the tradi-
tional main memory and secondary storage on devices, but also
storage and computation capabilities from the cloud. In this paper
we propose a new data structure library called SLIM. SLIM pro-
vides familiar STL-like interfaces and abstractions while accom-
modates the storage hierarchy that transcends device/cloud bound-
ary. Initial evaluation shows that using SLIM can greatly simplify
application development and reduce network and energy cost com-
pared with traditional approaches.

Categories and Subject Descriptors

C.2.4 [Computer Communication Networks]: Distributed Sys-
tems—Client/server; C.4 [Performance of Systems]: Design stud-

ies; D.1.3 [Programming Techniques]: Concurrent Programming—

Distributed programming

General Terms

Design, Performance

Keywords

Mobile, cloud, data structure, STL, storage hierarchy

1. INTRODUCTION

More computing devices are becoming mobile. These devices
derive much of their values by being connected not only to each
other but also to the cloud. Leveraging the cloud for mobile de-
vices is becoming an important research topic. Broadly speaking,
cloud is seen not only as a data source and sink, but increasingly as
computation backbone as well.

Splitting computation across device and cloud boundary is com-
plex and challenging. It touches on many known hard problems in
distributed computing, including state maintenance, heterogeneous
computing environment and programming model. The common
theme in much of the previous work is to preserve legacy compati-
bility as much as possible.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

APSys 2011, July 11-12, 2011, Shanghai, China

Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

However, interesting mobile applications often starts anew on
the mobile devices, whereas time-tested important desktop applica-
tions (e.g. email and browser) are worth the effort to be rewritten.
Therefore, we do not believe that preserving backward compatibil-
ity is a pressing issue. The SLIM project is motivated by the obser-
vation that programming abstraction evolves much slower than the
hardware trend. We argue that deriving program logic from data
structures is a “constant” despite hardware and software changes.
Indeed, modulo various marshaling and serialization steps in be-
tween, mobile applications all start their life as data structures ma-
nipulated by logic in the cloud and end up as data structures on the
devices.

We attempt to re-examine the notion of data structures in light of
the new storage hierarchy. Mosting existing data structure libraries
like STL (Standard Template Library [12]) considers only a single
layer: the volatile main memory. In the mobile world, there are
actually two more layers of storage: flash and the cloud. The char-
acteristics of these three layers are markedly different. The main
Memory is fast but volatile, flash is large and persistent, while cloud
has infinite computing and storage capacity (with respect to the de-
vice), but connectivity to it can be intermittent and unreliable. The
goal of the SLIM project is to investigate the feasibility of building
a high performing set of data structures that transcend these bound-
aries while preserving the semantics of existing libraries (e.g. STL)
as much as possible.

Our contributions include:

e We propose an STL-like data structure abstraction for mo-
bile/cloud application development. While preserving most
of the STL abstractions and interfaces, SLIM gives program-
mers simple directives to explicity control the data structures
such as the storage layers involved, the data flow direction of
updates, and the consistency bounds.

e We propose several techniques to make SLIM efficient and
easy to use. SLIM employs an efficient pointer swizzling al-
gorithm to handle the pointer-rich nature of data structures
across memory hierarchy boundaries. To deal with the un-
reliable nature of communication between cloud and device,

we leverage advanced asynchronous programming model called

“promoise” to simplify failure handling for the programmers.

e By building an RSS reader as an example, we demonstrate
that SLIM data structures provide a performance benefit, and
have the potential to enable computation offloading to the
cloud.

The rest of the paper is organized as follows. Section 2 describes
the programming model. Section 3 gives a high-level overview of
the system. Section 4 presents preliminary results. Section 5 and 6
covers related work, discussion and future work.

2. THE PROGRAMMING MODEL

The goal of the SLIM family of data structures is to create as
close as possible the illusion of dealing with the traditional and lo-
cal STL data structures, whereas the runtime hides the interactions
with the memory hierarchy. To begin the discussion, we will start
with a piece of pseudo-code for a RSS reader using the STL library,
as follows:

//Stepl: fetch RSS xml file to local
XMLObject xmlObj = XML: : Load ("RSS URL") ;
//Step2. parse XML to construct feed array
std : : vector<FeedItem> feeds = parse (xmlObj) ;
//Step3. find and display new feeds
foreach (feed in feeds) {

if (/xfeed is news/)

display (feed) ;

}
Sleep (freshInterval) ;

The code snippet above retrieves an XML object that contains the
content of the current feeds, and then parse it into an STL vector
for display. The reader is stateless, as such redundant feeds must
be removed. The corresponding SLIM version is shown below:

//SLIM vector of all feeds, parsed and to be updated by the cloud
SLIMVector<FeedItem, L3, C2D, OnDirtyBound<1> > feeds ("RSS URL

"

//set callback function for new feeds (use lambda function for simplicity)
feeds.onUpdate ([] (FeedItem newFeeds[]) {
/fall new feeds, just display
foreach (feed in newFeeds)
display (feed) ;
b

A SLIM data structure takes three directives at the declaration
time to tell the runtime the desired behavior of interacting with mul-
tiple storage layers: Level, Direction and Consistency:

e Level can be L1, L2 and L3. An L1 vector is exactly the
same as its volatile in-memory STL counterpart. An L2 vec-
tor corresponds to the external-memory model [13] where
the local persistent storage (usually Flash) is included as the
bottom layer. L3 indicates that the cloud is the final layer,
which is the case for the SLIM-based RSS reader. In our
current design, the layers are inclusive. In other words, an
L3 SLIM vector also can store data in local Flash storage if
it cannot all fit in memory. We do not see immediate need
to exclude local secondary storage explicitly in the L3 case,
though implementing such a policy is trivial.

e Direction expresses the data flow direction for updates.
D2C is for cases where the updates are coming from devices
towards the cloud, and is useful for scenarios such as the
outgoing queue for an Instant Messenger client, or a vector
that stores data obtained by a sensor node for cloud to an-
alyze. C2D is the opposite of D2C, where updates are first
collected in the cloud, and then pushed to the device. This
is the directive that the sample RSS reader uses. Finally, we
reserve DandC in case the data structure might be updated
by both the device and the cloud. Resolving potential up-
date conflicts in general is tricky. Therefore, currently we do
not allow DandC in SLIM. However, DandC could be useful
in practice. For example, it is needed if we model an email
folder as a vector of individual email messages, where user
can delete emails while newly received emails may be added
by the cloud. We are currently experimenting with different
designs and the DandC scheme may be supported in future
work.

e Consistency gives a few options as when the updates
should show up at the other end. Currently we support three

options: OnTimeBound and OnDirtyBound are bound
by refreshing cycles and number of dirty items, respectively.
Changing the consistency directive in the above sample code
to OnTimeBound with the parameter freshInterval
would make our RSS reader refreshing in the same manner
as the STL-based RSS reader. Finally, OnDemand simply
forces the update at user’s chosen point.

These set of directives transform the stateless implementation of
the RSS reader into an event-driven one, where the logic to display
the feeds is triggered by incoming new items. Notably, the logic
of parsing the XML object is no longer needed on the device side.
This logic is instead residing on the cloud side. The cloud will
perform the parsing and generation of the native vector that is now
mapped onto the device. This leads to both network and computa-
tion savings (Section 4) with little additional programming effort.

Multiple data structures can be linked together to enable rich
functionality. Indeed, a generic mailbox will not only include the
main vector to contain email bodies but also multiple sorted vectors
on various attributes, as well as index that allow search and lookup.
In the RSS example, the feeds can derive an index in the form of a
map at the cloud, and we can then map it into the client, allowing
keyword-based search:

typedef SLIMVector<PolyPointer<FeedItem>, L3, C2D, OnDirtyBound
<1> > FeedIndex;
//cloud—built inverted index on words, derived from the feeds vector
SLIMMap<string, FeedIndex, L3, C2D, OnDirtyBound<1> > index ("
RSS URL/index") ;
Promise<FeedIndex> resultPromise = index [key] ;
resultPromise . continueWith ([] (FeedIndex result) {
//display the search result for the key
foreach (feed in result)
display (~feed) ;
}) .ignore () ;

The code snippet above relies on an L3 inverted index that is built
at the cloud, each entry of the index contains pointers to the feeds
containing the keyword in question. The code contains two new
notions. The first is PolyPointer, which is a mechanism to allow
pointer access across memory hierarchies (including the cloud),
and will be explained in detail in Section 3. The second is promise
[5].

The rationale of using promise here is that including cloud as
a memory hierarchy introduces the unreliable network connectiv-
ity. Completely hiding this from programmer is impossible, as this
moves too much complexity into the runtime. One significant com-
plexity stems from the fact that, since SLIM is a family of generic
data structures, its instance can contain pointers. As such it is pos-
sible that the target of the pointer is absent from the device and
reside in the cloud at the time of pointer dereferencing. To allevi-
ate this problem, we borrow the interface of promise to deal with
asynchronous programming.

An instance of promise represents a future result value from an
operation. Initially, the promise is returned by certain operation im-
mediately (such as the operator [] in our case) in the unresolved
state, expecting to receive a result at some unspecified future time.
When the result is received, the promise becomes fulfilled and the
result becomes the value of the promise. Promise will then call the
continuation routine bound by the cont inueWith interface. In
the above case, we bind a lambda function to deal with the resolved
result value. If an error occurs, either in the calculation or network
transmission, the promise becomes broken. User can either attach
an exception routine to handle the error or ignore the exception, as
we have done with the ignore () interface in the example code.
Note that if the entries of the index, as part of the L3 SLIMMap,
are available locally, the query will be satisfied immediately.

3. SYSTEM DESIGN

This section focuses on the design of the SLIM vector. Just like
that of a STL vector, an element in a SLIM vector can be any fixed
size data, and can even contain pointers. We omit the details of L1
SLIM vector, as it is simply a regular STL vector that provides an
in-memory dynamic array of data items.

Even though we use vector as a representative data structure to
describe SLIM, SLIM actually supports a wide variety of other
generic data structures. Data structures such as map and linked
list can be easily implemented on top of vectors since vector can be
simply regarded as a continuous block of memory. Data structures
build on top of a vector can also inherit the same set of policies of
the base vector data structure they are based upon. However, this is
often not optimal or even correct. For example, when a new item
is inserted into a linked list that has a consistency policy of 1-dirty
bound, we should send the update after the entry itself and both its
previous and next entries are updated.

3.1 L2 SLIM vector

An L2 SLIM vector follows the external-memory model [13],
in that its total size can be greater than its allocated memory. The
user of the L2 vector doesn’t need to explicitly manage memory
space, with the trade-off of some performance overhead. Our goal
is to maximize the performance such that the operations over the
L2 vector approaches that of L1 when hit memory.

SLIM vectors are logically laid out in a non-overlapping 64bit
universal address space. A SLIM vector occupies a continuous
range in the space, logically with a starting pointer and an end
pointer. Opaque to the programmer, a SLIM vector is located with
an internal root pointer. The root pointer must be persistent and
available during the entire lifetime of the vector. An L2 vector is
given a pool of memory pages at its birth, but that pool may shrink
or grow transparent to the programmer.

The most significant complexity arises because of pointers: a
user can instantiate a pointer to walk through the vector in arbitrary
fashion. Likewise, internal operations such as push_back relies on
pointer as well. An L2 vector, by definition, is not guaranteed to
have all of its elements memory resident.

For efficiency reason, a pointer in SLIM should contain the in-
memory address of the point-to object (in our case, another SLIM
vector) if the pointed-to object is in memory. Like normal C++
pointer, the content of the L2 pointer should allow direct access
to memory address, instead of relying on extra translation of the
logical universal address each time. The process of translating a
universal pointer to a local address is commonly known as pointer
swizzling. Similarly, unswizzling is the reverse process to make
sure that direct access is disallowed, when the point-to object has
been removed from memory. Enabling these two processes takes
extra bookkeeping. There is a rich body of literature on pointer
swizzling, we refer reader to [9] which classifies different proposals
along the dimensions of the timing when swizzling occurs and the
behavior when an object is displaced from memory.

A pointer in SLIM is a PolyPointer which, along with other meta
data such as size and capacity of the vector it points to, includes two
fields, UA and MA, for universal address and physical memory ad-
dress, respectively. The state machine is depicted in Fig. 1, assisted
by two auxiliary SLIM-internal data structures. The first is the PPT
(PolyPointer Table) that records the MA-to-UA mapping, with the
granularity of a page (typically 4KB). Given a memory address,
PPT allows direct inspection of the UA page of the corresponding
memory page. The second data structure is RHT (Reverse Hash Ta-
ble) that enables the reverse lookup, returning the MA for a given
UA. These two tables are always updated atomically to ensure their

++ access/in-page ++ ++

swap

access

Figure 1: PolyPointer state machine. Pointer primitives that
may cause state transition include self-increment (++), derefer-
ence(access) and swapping. Also an in-page self-increment is
also distinguished from a cross-page one.

P T T
PPT

PP1(S) [0x1000] 0x408000 |-Direct access MA uA
PP2(U) -0x5000 _null Load miss 0x408000 | 0x1000
0x409000 | 0x2000

Translation mis
PR3 [02000] null] 0x40A000 | 0x3000
PP4(0) [0x3000] 0x409000 Outdated 0x40B000 | 0x4000

Figure 2: Four possible events upon the dereference of Poly-
Pointers. Dereferencing unswizzled PolyPointers (its MA field
is null) will raise a translation miss to fill the MA or a load miss
if the UA is also not available. Swizzled PolyPointer will have a
registered UA value in the PPT, which matches its MA field. To
identify an outdated PolyPointer, SLIM checks if the UA field
equals the value stored in the PPT entry that maps the MA.

mutual consistency. RHT also records the disk location for pages
that are not swapped out. RHT is persistent, whereas PPT can be
derived from RHT.

A new PolyPointer is initialized with a universal address, but its
MA is NULL. Such a PolyPointer is in state Unswizzled (shown
as "U" in Fig. 1), dereferencing such a pointer causes a translation
miss. Handling such misses can follow a few different paths. As-
suming that the allocated memory has been used up. One of the
used pages will be evicted, written to disk if dirty. The PPT entry
now records UA of the dereferenced PolyPointer, the RHT is up-
dated, and the MA field is calculated from the PPT entry position
and the offset in the page (Fig. 2). It is also possible that another
PolyPointer within the same UA page suffers a miss as well. In this
case, the PPT entry already exists, and the only thing needs to be
done is to update the MA field of that PolyPointer. In this and the
earlier case, the pointer now becomes Swizzled (shown as "S" in
Fig. 1). A Swizzled PolyPointer can become Unswizzled, this hap-
pens if it steps beyond a page boundary. The next dereferencing
will suffer a translation miss (and a possible load miss).

If a target memory is replaced, the corresponding PPT entry will
record the UA of a different PolyPointer. All PolyPointers whose
MAs point to this entry without the matching UA are now in the
state Outdated (shown as "O" in Fig. 1). There are several ap-
proaches to discover and fix a PolyPointer in this state. For in-
stance, the state can be explicitly changed to Unswizzled at the
time of replacement, requiring either a reverse mapping table or
scanning.

In the current implementation, we leave the pointer unchanged,
but require consulting PPT at the time of dereferencing the pointer.
This strategy works well if vector contains a large amount of data
in its body, so that such overhead is amortized. Handling load miss
is straightforward, RHT is first consulted with the requesting UA
to locate the page off the stable storage, and PPT is then updated to
record the memory page that the page is loaded into.

We set an upper limit on the secondary storage that can be used
by SLIM. Of course, potentially Flash may fail or may run out of
space. We handle these by throwing exceptions, similar to tradi-
tional STL when it run out of memory.

3.2 L3 SLIM vector

We model L3 as a pair of synchronized L2 vectors, one at the
device and one at the cloud. To keep it simple, our current design
focuses on C2D and D2C, in which cases application updates hap-
pen only at one end of the pair, and are reflected to the other end
with SLIM updates, based on its consistency policy. An update ex-
pands the view. The one receives application updates is called the
master view, whereas the one receives updates is called the slave
view. For the time being we do not consider the shrinking of a view
(i.e. delete) by simply tag the deleted entry rather than removing it.

Updates as well as load miss at the device must be resolved with
the same universal address. Therefore in L3 the management of
the universal address space is in the cloud, independent of where
the addresses are consumed. In the case of D2C, the device will
ask a chunk of space from the cloud, and then assign them at the
device when it receives application updates. The corresponding
SLIM update will include the universal address that was applied in
the device.

Handling SLIM updates can take different approaches. Our cur-
rent implementation records application updates in a log, and ship
the log to be replayed at the other end. An alternative is to perform
updates through a shared key-value store, where multiple updates
can be merged. Some scenarios may require the instantiation of
a new SLIM vector in one shot. For instance, if a vector is to be
sorted, it is easier to derive the sorted vector in the cloud and map
it to device while destroying the old one, than updating the entries
as the sorting is progressing.

We require all data in the view to be available at the cloud. This
is justified because storage is cheap in the cloud, and some of the
data needs to be kept indefinitely anyway (e.g. gmail). Since cloud
has all the data, it is possible for the device to freely reclaim storage
resources as it sees fit. The only additional bookkeeping is to mark
in RHT that the page is now accessible only from the cloud. When
the device suffers a load miss, the universal address enclosed in the
request allows the cloud to retrieve the data.

Cloud may issue update events when the device is accessing the
data structure and vice versa, thus causing race conditions. SLIM
allows user to specify policy to coordinate concurrent operations
when update arrives while the user is accessing the data. The user
can choose a more restricted access policy using critical sections, or
more relaxed policy as long as the application semantic can tolerate
benign races. One such case is when the application loops through
the vector while SLIM updates adds new elements at the tail.

4. EVALUATION

In this section we report some initial results of a prototype SLIM
implementation. We first use a micro benchmark to evaluate the
performance of SLIM vector when no network traffic is incurred, to
validate our pointer swizzling algorithm and measure its overhead.
‘We then conducted a case study using RSS reader as an example to
demonstrate the advantage of SLIM when applied in real applica-
tions. All the experiments are performed on a Windows 7 machine
with 2.13GHz Intel Core2, 2GB main memory, and 1Gb ethernet.

4.1 Microbenchmark

We measured the performance of SLIM vector under microbench-
marks with sequential read/write, random read/write, and push_back
operations. We compared it with the performance of regular STL

~4—pushback ~~#-seq-read seq-write =>=rand-read ~-rand-write

25

n

2
15 \

Normalized Slowdown

0.5

4 8 16 32 64 128 256
Element Size (Bytes)

Figure 3: Microbenchmark results on SLIM vector primitives,
normalized to regular vector performance.

vector under the same microbenchmarks. The push_back bench-
mark appends elements one by one to the tail of the vector un-
til the total data size reaches 512KB. Other benchmarks perform
512K operations, each for one element, on an initialized vector with
512KB of total data. In the experiments, we configured SLIM vec-
tor to be L3. In order to avoid network traffic during the measure-
ment, all the data in the vector were touched once to prime the data
into main memory, and we set the consistency policy to OnDemand
so that updates will not propagate to the cloud.

Fig.3 reports the normalized performance of SLIM vector rela-
tive to that of regular STL vector. The x-axis represents the element
size of the vector in bytes. As expected, SLIM vector generally per-
forms worse than STL due to the inherent overhead'. As shown in
the figure, the larger the element size, the smaller the performance
difference between SLIM and STL. As elements get larger, the cost
of the operations on the payload becomes larger, and hence the rel-
ative cost for maintaining the states of the SLIM metadata becomes
smaller. When element size is larger than 32 bytes, the performance
difference between SLIM and STL vectors (~5%) is no longer sig-
nificant. In many real world applications that share data between
cloud and devices, element size is often relatively large (e.g. an
RSS feed, or an email message). We believe that for many such
real world scenarios, the overhead of SLIM vectors relative to STL
is insignificant.

4.2 Case Study on RSS Reader

We implemented an RSS reader prototype using SLIM vector. It
essentially is a traditional RSS reader partitioned into a cloud part
and a device part. The cloud part fetches XML files from the orig-
inal RSS content provider, parses them into feed items and stores
the feeds in a SLIM vector. The device part directly accesses the
SLIM vector to get the updated RSS feeds. There are two major
benefits for RSS reader implemented this way: 1) the job for pars-
ing XML files is migrated to the cloud, which saves energy in the
device side; 2) the network traffic is also greatly reduced because
there is no duplicated feed items in the SLIM vector, and hence
only the newly updated feeds need to be transferred. In contrast,
a traditional RSS reader needs to fetch the entire XML file, which
often contains old feed items.

To measure the computation savings, we profiled the execution
of XSD [2], an open source XML parser written in C++, for parsing
an XML file from Yahoo News [3] which contains 20 feed items.
The parsing task takes about 24 million processor instructions. The
total overhead is proportional to the number of times the feed is
redundantly transfered in the stateless implementation.

' An exception is the push_back benchmark, which is caused by
more aggressive function inlining by the compiler for SLIM

=
o

£ 5008
£110008

20008

i 40008

Ratio of Traditional/SLIM Traffic

o B N W B U OO N O
L

1 2 5 10
Ratio of Cloud Fetch/Server Update Cycle

Figure 4: Comparison of network traffic between SLIM and
normal RSS reader. The traffic is normalized to SLIM reader.
The feed item size varies from 500B to 4000B

We also evaluated the device traffic saving compared to the tra-
ditional RSS reader. In the experiment, we built an RSS provider
that maintains 100 channels and produces new feed items for each
channel periodically and notifies the subscriber. Each channel or-
ganizes the latest 10 feed items in an XML file. For SLIM RSS
reader, we measured the network traffic between the device and
the cloud, while for the traditional one, we just measured the net-
work traffic between the SLIM cloud service and the RSS content
provider, since the cloud service itself requires the same traffic as
the traditional RSS reader.

Fig. 4 shows the results. We change the number of newly gen-
erated feed items that triggers one notification to the subscriber (as
shown in the x axis). The y axis represents the ratio between the
network traffic of the traditional and the SLIM RSS reader.

In most cases, SLIM RSS reader’s network traffic is much smaller
than the traditional one. This is because SLIM breaks down the
granularity of network data transfer from XML file to feed item,
thus device only needs to fetch new feed items. In particular, if
the cloud fetches the XML file every time when a new feed is gen-
erated, the traditional RSS reader’s network traffic is more than 9
times of SLIM’s. On the other extreme, when cloud service fetches
XML file only when all its contents are updated, the traffic is about
the same because SLIM RSS reader’s meta-data traffic overhead is
no more than the traditional RSS reader’s update notification traf-
fic.

5. RELATED WORK

Mobile computing leveraging cloud has been a extremely popu-
lar topic, and we can only discuss a few works with limited space.
One dimension to compare is the granularity and partition point of
device/cloud computation. Existing proposals include virtual ma-
chine (Internet Suspend/Resume [1] and CloudLet [11]), method-
/procedure call (Cyber foraging [4], CloneCloud [6] and MAUI [7]),
and explicit event such as tuple space [10]. SLIM adds to this land-
scape with the data structure angle.

Extending memory hierarchy beyond the single main memory
hierarchy is an old idea. Still, the external memory model [13] and
existing implementations such as STXXL [8], usually include sec-
ondary storage only. Our design leverages and extends the pointer
swizzling technology across all three levels of memory hierarchy,
transcend the device and cloud boundary. We also borrow the latest
advancement of asynchronous programming to deal with network
unreliability.

6. DISCUSSION AND FUTURE WORK

Instead of building a monolithic application, SLIM requires the
application to be partitioned into a cloud and a device parts which
interact with each other by sharing the SLIM data structures. In our
prototype, the partition is done manually. For future work, we are
looking at building a SLIM-aware compiler that can automatically
partition the code with the help of some user annotations.

Currently, SLIM is implemented as a library and is linked into
the applications. Therefore, its allocation policies are managed in
a per-application basis. It is potentially beneficial to build SLIM as
a middleware and being managed by the device OS. The flexibility
of freely modifying memory allocation transparently to the appli-
cation affords the possibility of controlling and prioritizing mem-
ory usage in mobile device depending on application states (e.g.
foreground or background) and system requirements (e.g. shutting
down part of the main memory to get into low energy mode).

In this paper, we assume the cloud is reliable and it holds the
“golden” copy of the application state. In reality, a machine in the
cloud can fail, and the process in the cloud may lose its in-memory
state. It is important that the clould part can be restarted and quickly
recover to a consistent state with the device. For future work, we
plan to add automatic logging of SLIM data structure updates to the
cloud. The log needs to be stored in a reliable cloud file system so
that individual machine failure will not cause the loss of user data.

Our initial evaluation is encouraging. However, significant work
remain to fully demonstrate the power and validate the vision. To
be pragmatic, we plan to examine the design of a few demanding
applications, including browser, file system and mailbox, each of
which may contain multiple data structures. This exercise can then
guide the building of the SLIM library. At the system level, an
interesting direction is to install policies to control the footprint of
various data structures so as to minimize energy consumption.

References

[1] The internet suspend/resume project. http://isr.cmu.edu/.
2

[3] Yahoo news. http://rss.news.yahoo.com/rss/topstories.

Xsd. http://www.codesynthesis.com/products/xsd/.

[4] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H. i Yang. The
case for cyber foraging. In the 10th ACM SIGOPS European Workshop, pages
87-92. ACM Press, 2002.

S. Bykov, A. Geller, G. Kliot, J. Larus, R. Pandya, and J. Thelin. Orleans: A
Framework for Cloud Computing. Technical report, Technical Report MSRTR-
2010-159, Microsoft Research, 2010.

B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud: Elastic
execution between mobile device and cloud. In Proceedings of the 6th Euro-
pean conference on Computer systems, EuroSys "11, New York, NY, USA, 2011.
ACM.

[7] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra,
and P. Bahl. Maui: making smartphones last longer with code offload. In Pro-
ceedings of the 8th international conference on Mobile systems, applications,
and services, MobiSys ’ 10, pages 49-62, New York, NY, USA, 2010. ACM.

[5

[6

[8] R.Dementiev and L. Kettner. Stxxl: Standard template library for xxI data sets.
In In: Proc. of ESA 2005. Volume 3669 of LNCS, pages 640-651. Springer, 2005.

A. Kemper and D. Kossmann. Adaptable pointer swizzling strategies in object
bases: design, realization, and quantitative analysis. The VLDB Journal, 4:519—
567, July 1995.

[10] A. L. Murphy, G. P. Picco, and G. catalin Roman. Lime: A coordination model
and middleware supporting mobility of hosts and agents. ACM Transactions on
Software Engineering and Methodology, 15:2006, 2006.

[11] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based
cloudlets in mobile computing. IEEE Pervasive Computing, 8:14-23, October
2009.

[12] A. Stepanov and M. Lee. The standard template library. Technical Report HPL-
95-11(R.1), HP Laboratories, 1995.

[9

[13] J.S. Vitter. External memory algorithms and data structures: dealing with mas-
sive data. ACM Comput. Surv., 33:209-271, June 2001.

