
SPECTRE: Speculation to hide communication latency

Jean-Philippe Martin, Christopher J. Rossbach and Michael Isard
Microsoft Research, Silicon Valley, CA, USA

ABSTRACT
We describe work in progress on the Spectre system
which aims to provide high performance computing over
distributed shared memory, targeting workloads such as
graph algorithms for which functional or dataflow de-
compositions are inefficient. We exploit aggressive spec-
ulation to hide the latency of remote memory accesses
and synchronization, and execute all code transaction-
ally so that mis-speculations can be discovered and re-
verted. Unlike previous speculative transactional sys-
tems Spectre makes side effects visible beyond transac-
tion boundaries before the transactions have committed,
tracking dependencies to ensure correctness on abort:
we call this property transgression. We outline the Spec-
tre design and provide preliminary results from a mi-
crobenchmark to motivate the approach.

1. INTRODUCTION
This paper explores two linked hypotheses: that some
algorithms are most naturally and efficiently implemented
over a shared memory abstraction; and that speculation
can be used to hide the communication latency that is
frequently a bottleneck when implementing distributed
shared memory.

We are building the Spectre system to test our hy-
potheses. It combines aggressive speculation with dis-
tributed software transactional memory to detect mis-
speculation and undo its effects. Our intention is to
identify some performance-critical workloads that re-
quire more memory or processing power than is avail-
able on a single computer, but which benefit from the
abstraction of mutable shared state. We will then com-
pare their performance on our system with state of the
art implementations on existing distributed execution
engines such as MPI [18] and Dryad [12].

1 2 3 4

Figure 1: Four, numbered, steps of a Loopy
Belief Propagation algorithm. In each step four
values (grey background) are read while a single
value (striped) is written.

Our focus on demonstrating the approach’s potential
leads us to building a runtime system first rather than
an end-to-end programming model. The implementa-
tion and APIs of the system are designed to support
high-performance general purpose distributed comput-
ing with speculation, and the applications it executes
are ported by hand to exploit its features. We leave for
future work some questions of developer simplicity, de-
bugging support, and fault tolerance. The initial goal
is to demonstrate that speculation can aid performance,
and if this succeeds we plan to develop a layer that al-
lows us to compile a high-level language directly to our
runtime system.

The canonical type of algorithm that might benefit from
Spectre is one that performs fine-grain updates to a
large shared datastructure in an order that is difficult
to predict statically. An example is sketched in Fig-
ure 1 which shows some steps in the execution of a
Loopy Belief Propagation algorithm on a grid-graph:
a small example graph is shown for clarity but a real
application might span the memory of multiple cluster
computers. In each step four values are read from the
shared data-structure and used to compute a single re-
sult which is written back to the graph. The order of
updates of graph nodes in this algorithm is a function
of the previous updates so a strict functional decompo-
sition introduces a dependency between each step; and
since the ordering is data-dependent a static decompo-
sition must conservatively insert a dependence between
an update and the entire graph state at the previous
step, which can be very inefficient. Many graph algo-
rithms, including other machine learning and inference
approaches, share this memory access pattern [16] as do
standard problems such as mesh refinement.

In many practical cases like those shown in Figure 1



available parallelism is abundant, despite the fact that
the algorithm is hard to express functionally. In the
figure, the only constraint is that the operations in
Step 4 must be executed after those in Step 1—Steps 2
and 3 could be executed in any order with respect to
the other operations.

Speculation can help in two ways: first, some cores can
run future steps in parallel, speculating that they do
not need the output from the preceding steps. This
allows a core to compute step 2 in parallel with step 1.
Second, cores can advance through steps, speculating
that what they have computed so far is correct. This
allows a core to compute steps 1 and 4, consuming its
own value without having to wait to hear whether the
steps computed on other cores have modified what it
is reading. In other words, speculation can discover
parallelism and it can hide communication latency.

In order to maintain correctness it is essential to detect
and undo mis-speculations. The engineering challenge
we face is therefore to achieve performance gains from
speculation that exceed the overhead introduced by
bookkeeping and re-execution.

The Spectre system is currently a work in progress:
we have a working prototype, but we are still exploring
its design space, tuning its performance, and learning
how best to program it. This paper therefore provides
motivation and sketches the design, within the available
space constraints, but reports only on provisional per-
formance microbenchmarks.

2. COMPUTATIONAL MODEL
A Spectre program is made up of atomic code frag-
ments called tasks. Instead of a total order as in a
sequential program, one can specify a partial order of
tasks to allow more parallelism. It can be represented
as a task graph, as Figure 2 illustrates. If task b is reach-
able from task a in the task graph, then we write a < b.
Our system allows a task to insert new successor tasks
onto the graph during its execution, thus enabling iter-
ation and recursion as in systems such as Cilk [1].

1 

4 

7 
8 3 

6 

5 

2 

Figure 2: The structure of a Spectre program.

Spectre guarantees that the outcome of a correct
program’s execution is indistinguishable from a serial
execution of the tasks that respects the partial order.
The numbers in Figure 2 show one such possible order.

A task may receive read-only arguments when it is
constructed, and all other inter-task communication is
through a global set of shared objects. Each object has
a unique identifier (OID), assigned at creation, which
can be used as a reference to that object, for example
by passing it as an argument to another task. Other
side effects are possible, but for simplicity we focus on
shared objects until Section 3.4.

The state of shared objects is managed using a transac-
tional memory system in order to support aggressive
speculation. Tasks may be executed concurrently or
out of order, and consequent violations of the program
serialization order are detected using the transactional
memory. Mis-speculated tasks are then aborted and re-
executed. For simplicity, and to maximize the opportu-
nities for speculation, all code is executed transaction-
ally.

In addition to adopting traditional software transac-
tional memory techniques, Spectre makes side-effects
visible beyond transaction boundaries when transactions
have finished execution but not yet committed, a prop-
erty we call transgression. This enables more aggressive
speculation since there is no need to block computation
while waiting for a distributed transaction commit. We
track read dependencies between uncommitted transac-
tions to maintain correctness in the face of transaction
abort.

For the remainder of this paper, we use the term trans-
action to refer to an execution of a task. Each task may
be executed multiple times, perhaps even concurrently,
but at most one execution of a task will ever commit.
The program completes when every task in the graph
commits. We refer to transactions as though they were
members of the partial order <. In addition we say a
task a has committed if and only if any execution of a
has committed.

3. SYSTEM DESIGN

SN

SNCN

CN
ON

Figure 3: The Spectre system

The Spectre system (Figure 3) runs on a cluster of
server computers and comprises a set of storage nodes
(SN), a set of compute nodes (CN), and an ordering
node (ON). These nodes are processes, and each com-
puter may run more than one node: a typical deploy-
ment allocates an SN and a CN to every computer in the
cluster. The SNs implement a distributed shared object
space, the CNs execute transactions, and the ON co-
ordinates task execution. The current implementation
uses a centralized ON for simplicity, however we antic-



ipate this will become a bottleneck and a decentralized
design to replace it is described in Section 5.

The SNs store the authoritative version of each object
along with its version number. SNs can be queried
for object versions, and they participate in the two-
phase commit protocol described in Section 3.3. Each
object is mapped to a unique, static SN. The SNs accept
transactions in first-come, first-served order and have no
knowledge of the task graph.

The ON stores the complete task graph, manages the
assignment of tasks to CNs, and informs CNs when
it is safe to commit a given transaction. When a
Spectre application creates a task, it may specify a
CN assignment for that task, or it can leave it up to the
system to decide placement. Newly created tasks are
sent to the ON, and it is informed when transactions
commit.

Since the SNs are oblivious to the partial order, it is
important to only commit tasks when all of their specu-
lation has been resolved. To that effect, the ON checks
when all of a task a’s predecessors in the task graph
have committed, and then it informs the corresponding
CN that a is committable. A committable task might
not actually commit right away (see Section 3.3). When
a subgraph, all of whose predecessors have committed,
lies entirely on one CN, that CN can make local deci-
sions about commit order without communicating with
the ON.

Each CN executes transactions, caches object values,
and prefetches objects to make speculation more effec-
tive. Spectre makes use of concurrency both within a
multi-core CN and across CNs. A single CN runs trans-
actions concurrently on multiple cores, using transac-
tional memory to manage conflicts. Each CN tracks the
subset of the global task graph that has been scheduled
locally, and detects local conflicts between reads and
writes.

3.1 Task execution
Each CN concurrently executes as many tasks as there
are cores on its computer, giving preference to transac-
tions that are least likely to abort using topological or-
der on the task graph. Where possible, Spectre avoids
blocking computations while awaiting communication
results.

A transaction can be in one of four states. It starts out
Running, is Completed when all its code is executed, and
ends up either Committed or Aborted depending on the
outcome of the commit protocol. The CN tracks reads
and writes to shared objects using a per-transaction
ReadSet and WriteSet. A ForkSet tracks any tasks a
transaction has created. Writes become visible to other
tasks on the same CN when a transaction completes,
and become visible globally when the transaction com-
mits.

3.2 Object caching
Each CN caches multiple versions of objects, and spec-
ulatively uses cached values to satisfy a transaction’s
reads. Stale reads are detected by SNs at commit time,
and a prefetching and best-effort invalidation protocol
helps to keep cached objects up to date to avoid exces-
sive aborts.

The task graph is used to select which version of an
object the CN will use for transaction in a read request.
This allows tasks to complete out of order: if x < z and
z < y then z will read x’s values even after y completes.

3.3 Aborting and Committing
If a transaction x aborts, the CN also aborts all trans-
actions that read values written by x and schedules new
instances of the aborted tasks. These actions can be
decided locally: the ON only needs to be involved if
x created new tasks that may have been dispatched to
other CNs, in which case those tasks also need to be
aborted.

If transaction x writes some value and then y reads it
or overwrites it, this creates an ordering constraint: x
must appear before y in the serialized order. The CN
keeps track of these constraints as a dependency graph.

When a CN C hears from the ON that some transaction
x is committable, it must wait until all of x’s predeces-
sors in the dependency graph have committed before it
can attempt to commit x. Commit is implemented using
a standard two-phase distributed protocol that includes
all the SNs that store any object in the union of x’s
ReadSet and WriteSet.

3.4 Allowing side effects
In practice, a program must produce output beyond
merely updating its own set of shared objects. We
provide extensions to allow side effects that are familiar
from other transactional memory systems. Specifically,
Spectre supports commit and abort actions [11, 26]:
When a transaction commits or aborts, its OnCommit

or OnAbort method is called, providing the transaction
with a mechanism to make side-effects visible or clean
up after side-effects which must be reversed.

4. EVALUATION
While our system implementation is still a work in progress,
we have implemented a full distributed prototype of
Spectre and include one microbenchmark to motivate
our hypothesis that transgressive speculation can lead
to increased performance. Figure 4 shows timings for
a benchmark that computes 800 elements of the series
xi = xbi/8c×xbi/9c, where x0 is a random 200×200 ma-
trix. The results show that the overhead of our specu-
lation is about 18%, and on this workload transgression
is beneficial from two cores onwards. While it is pre-
mature to generalize this to real-world workloads and
larger systems, we believe it demonstrates the promise
of the approach.



0

1

2

3

4

5

6

7

1 2 3 4

Threads per machine

Sequential Microbenchmark

no speculation 1 computer 2 computers

Figure 4: Speculation finds parallelism.
Speedup is relative to the 1-node specula-
tive case.

5. WORK IN PROGRESS
This section describes a number of features that we
are planning to implement as we continue to develop
the Spectre system. They are all motivated by our
overall goal of supporting realistic workloads with high
performance.

5.1 Advanced contention management
Currently, when we abort a completed transaction x
we also abort any transactions that speculatively read
values written by x. There are cases, however, where
this is unnecessarily conservative: consider for example
a transaction x that removes the head of a priority queue
and passes it to some other transaction y that runs an
expensive computation. x may have run speculatively
out of order with another transaction z that modifies
the priority queue, and so x must be aborted and re-run
when z completes. If, on re-running x, the same object
is at the head of the priority queue as before, there is
no need to abort y and by tracking object values as
well as their versions we can implement a contention-
management policy that avoids the cost of re-execution
in such cases.

5.2 Scheduling and locality
Co-locating computations with the SN that hold their
data may be crucial for the performance of some work-
loads. We plan to investigate scheduling policies that
leverage annotations placed on tasks describing the ob-
jects they are likely to read. There is a tradeoff be-
tween balancing load effectively and ensuring data lo-
cality, and it may turn out to be beneficial to allow
object migration between SNs to improve overall per-
formance. Annotations that predict access patterns can
also be used by a CN to prefetch objects not already
present in its cache, either before or during task execu-
tion.

5.3 Decentralized task graph
We anticipate that the centralized ordering node will be-
come a bottleneck in our system. Although speculative
computation can proceed on any CN while it is waiting

for the ON to catch up with delayed commit notifica-
tions, deep speculation past commit entails overheads
in the form of larger object version data-structures, and
higher likelihoods of cross-CN conflicts yielding a higher
abort rate. It is therefore natural to consider a decen-
tralized implementation for the task graph in which the
CNs communicate directly with each other about which
tasks have committed and which are committable. With
a decentralized graph, we may continue to use a central-
ized scheduler, or move to a work-stealing design like
that used in the Cilk [1] system.

5.4 Conflict detection strategy
Our current design detects local conflicts at a CN when
a transaction completes, and global conflicts when it at-
tempts to commit. We plan to investigate alternative
policies [17, 24, 25], to see which is best suited to our
workloads and the distributed nature of the Spectre
system. For example, an eager distributed conflict de-
tection scheme allowing SNs to broadcast object writes
to CNs may benefit some workloads by eliminating work
wasted executing doomed transactions. Broadcasting
all writes may prove too expensive, so annotations on
objects or on writes may help the system prioritize up-
date messages.

6. RELATED WORK
Spectre combines techniques from transactional mem-
ory and distributed shared memory. DSM presents a
simple interface to mutable data, and STM is used to
enable speculation in order to hide the latency resulting
from synchronization and accessing remote data.

With relation to the other TM work, Spectre is an
object-granularity [10], multi-versioned [3, 22] distributed
STM system. Spectre has visible readers [23] and re-
lies on eager conflict detection [17] at local nodes, while
readers are invisible across CNs, and a lazy conflict de-
tection [24] scheme is used to detect cross-machine con-
flicts based on commit-time validation of read-sets [6].
Spectre implements dependence-awareness [20, 21], al-
lowing concurrent transactions on a single machine to
share uncommitted state. A comprehensive review of
the TM literature through 2010 can be found in [8].

Our emphasis on speculation guided our design. All-
transactional programs have been proposed before [15],
to simplify programming, but to the best of our knowl-
edge, Spectre is the only TM design that allows the
system to speculate past control flow boundaries be-
tween successive transactions. Spectre goes against
received wisdom because it is not opaque [7]. Opacity
requires that all transactions (not just the ones that will
commit) see a consistent view of the memory. However,
we do not believe this is a problem for Spectre because
it executes all code transactionally, so the effects of er-
rant transactions are never visible to non-transactional
code. Conventional C# sandboxing is used e.g. to pre-
vent native method calls from being based on incon-
sistent state, and doomed transactions are eventually
discovered and aborted by our contention-management



system.

Mechanisms similar to those outlined in Section 5.1 have
been developed in the past, for slightly different pur-
poses: Galois classes [14] and transactional boosting [13]
allow the programmer to provide inverse operations for
concurrent data structures, in order to prevent false
conflicts on operations that commute even though they
may access some memory locations in common. Ab-
stract nested transactions [9] do the same by isolating a
computation. If the outcome is the same (despite false
conflicts), then the rest of the transaction need not be
aborted.

Spectre represents the program as a directed acyclic
graph, like Cilk [1] which showed that distributed func-
tional programs can be made to scale. Other systems
such as TxCache [19] have explored transactional shared
memory. We know of only a few systems that combine
a transactional runtime with shared memory: Cluster-
STM [2] shows that aggregating communication yields
excellent scalability. Dash and Demsky’s transactional
DSM [4, 5] shows that prefetching and caching help mit-
igate the latency of distributed shared memory, and re-
lies on transactional abort to recover from mis-speculation,
as Spectre does. However they are not transgressive
and wait to know that a transaction has committed be-
fore executing beyond it.

7. CONCLUSIONS
The Spectre implementation is still a work in progress.
Our preliminary results convince us, however, that for
inherently parallel workloads, transgressive speculation
is a powerful tool to hide latencies generated by syn-
chronization and approach an ideal parallel speedup.

8. REFERENCES
[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul,

C. E. Leiserson, K. H. Randall, and Y. Zhou.
Cilk: an efficient multithreaded runtime system.
In PPoPP, 1995.

[2] R. L. Bocchino, V. S. Adve, and B. L.
Chamberlain. Software transactional memory for
large scale clusters. In PPoPP, 2008.

[3] J. Cachopo and A. Rito-Silva. Versioned boxes as
the basis for memory transactions. In OOPSLA,
2005.

[4] A. Dash and B. Demsky. Software transactional
distributed shared memory. In PPoPP, 2009.

[5] A. Dash and B. Demsky. Automatically
generating symbolic prefetches for distributed
transactional memories. In ACM/IFIP/USENIX
International Middleware Conference, 2010.

[6] D. Dice, O. Shalev, and N. Shavit. Transactional
locking II. In DISC, 2006. Springer-Verlag LNCS
Volume 4167.

[7] R. Guerraoui and M. Kapalka. On the correctness
of transactional memory. In PPoPP, 2008.

[8] T. Harris, J. R. Larus, and R. Rajwar.
Transactional Memory, 2nd edition. Synthesis
Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2010.

[9] T. Harris and S. Stipic. Abstract nested
transactions. In TRANSACT, 2007.

[10] M. Herlihy, V. Luchangco, M. Moir, and
I. William N. Scherer. Software transactional
memory for dynamic-sized data structures. In
PODC, Jul 2003.

[11] O. S. Hofmann, C. J. Rossbach, and E. Witchel.
Maximum benefit from a minimal HTM. In
ASPLOS, 2009.

[12] M. Isard, M. Budiu, Y. Yu, A. Birrell, and
D. Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In
EuroSys, 2007.

[13] E. Koskinen and M. Herlihy. Concurrent
non-commutative boosted transactions. In
TRANSACT, 2009.

[14] M. Kulkarni, K. Pingali, B. Walter,
G. Ramanarayanan, K. Bala, and L. P. Chew.
Optimistic parallelism requires abstractions. In
PLDI, 2007.

[15] B. C. Kuszmaul and C. E. Leiserson. Transactions
Everywhere, 2003.

[16] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. GraphLab: A
new framework for parallel machine learning.
CoRR, 2010.

[17] K. E. Moore, J. Bobba, M. J. Moravan, M. D.
Hill, and D. A. Wood. LogTM: Log-based
transactional memory. In HPCA. 2006.

[18] MPI. http://www.mcs.anl.gov/mpi/.
[19] D. R. K. Ports, A. T. Clements, I. Zhang,

S. Madden, and B. Liskov. Transactional
consistency and automatic management in an
application data cache. In OSDI, 2010.

[20] H. E. Ramadan, C. J. Rossbach, and E. Witchel.
Dependence-aware transactional memory for
increased concurrency. In MICRO, 2008.

[21] H. E. Ramadan, I. Roy, M. Herlihy, and
E. Witchel. Committing conflicting transactions
in an STM. In PPoPP, 2009.

[22] T. Riegel, P. Felber, and C. Fetzer. A lazy
snapshot algorithm with eager validation. In
DISC. Springer, 2006.

[23] W. N. Scherer III and M. L. Scott. Contention
management in dynamic software transactional
memory. In PODC Workshop on Concurrency and
Synchronization in Java Programs, 2004.

[24] A. Shriraman, S. Dwarkadas, and M. L. Scott.
Flexible decoupled transactional memory support.
In ISCA. 2008.

[25] S. Tomic, C. Perfumo, C. Kulkarni, A. Armejach,
A. Cristal, O. Unsal, T. Harris, and M. Valero.
EazyHTM: Eager-lazy hardware transactional
memory. In MICRO, 2009.

[26] C. Zilles and L. Baugh. Extending hardware
transactional memory to support nonbusy waiting
and nontransactional actions. In TRANSACT.
2006.


