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ABSTRACT
The Single-chip Cloud Computer (SCC) is an experimen-
tal processor created by Intel Labs. The SCC is based on a
message passing architecture and does not provide any hard-
ware cache coherence mechanism. Software or programmers
should take care of coherence and consistency of a shared
region between different cores. In this paper, we propose an
efficient software shared virtual memory (SVM) for the SCC
as an alternative to the cache coherence mechanism and re-
port some preliminary results. Our software SVM is based
on the commit-reconcile and fence (CRF) memory model
and does not require a complicated SVM protocol between
cores. We evaluate the effectiveness of our approach by com-
paring the software SVM with a cache-coherent NUMA ma-
chine using three synthetic micro-benchmark applications
and five applications from SPLASH-2. Evaluation result in-
dicates that our approach is promising.

1. INTRODUCTION
As the number of cores increases in a chip multiprocessor,

the on-chip interconnect becomes a major performance and
power bottleneck. It takes up a significant amount of the to-
tal power budget. A complicated hardware cache coherence
protocol worsens the situation by increasing the amount of
messages that go through the interconnect. For this rea-
son, there have been many studies on the relationship be-
tween on-chip interconnects and cache coherence protocols
for manycores. But, most of them increase the chip design
complexity and result in introducing high hardware valida-
tion costs. Some recent manycores, such as the Intel Single-
chip Cloud Computer (SCC)[4], choose a message passing
architecture that does not require hardware cache coherence
mechanism although this sacrifices ease of programming.

The SCC experimental processor[4] is a 48-core concept
vehicle created by Intel Labs as a platform for many-core
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Figure 1: The organization of the SCC.

software research. Figure 1 describes the overall organiza-
tion of the SCC. It has 24 core tiles arranged in a 6x4 array
and four DDR3 memory controllers. Each tile consists of
two P54C IA cores and 16KB message passing buffer (MPB).
Each core has 16KB L1 instruction and data caches and a
256KB L2 cache. MPB is designed for fast communication
between cores. Intel provides a customized Linux running
on a core and an MPI-style communication library called
RCCE[14].

Each memory controller supports up to 16GB DDR3 mem-
ory. While this implies that a maximum capacity of 64GB
memory is provided by the SCC, each core is able to access
only 4GB of memory because it is based on the IA-32 archi-
tecture. To overcome this limitation, the SCC allows each
core to alter its own memory map. Each core has a lookup
table, called LUT, which is a set of configuration registers
that map the core’s 32-bit physical addresses to the 64GB
system memory. Each LUT has 256 entries, and each entry
handles a 16MB segment of the core’s 4GB physical address
space. An LUT entry can point to a 16MB system memory
segment, an MPB, or a memory-mapped configuration reg-
ister. Each core’s LUT is initialized during the bootstrap
process, but the memory map can be altered by any core
at any time. Consequently, the software can freely map any
memory region as a shared or private region. The SCC does
not provide any cache coherence mechanism. This implies
that software or programmers should take care of coherence
and consistency of a shared region between different cores.

A software shared virtual memory (SVM) system[1, 5,
7, 8, 9, 10, 11, 13] can be one of the alternatives to the
hardware cache coherence mechanism. Software SVMs were
originally developed for distributed memory multiprocessors
to provide an illusion of a single, globally shared address
space for the user. In this paper, we propose an efficient
software SVM for the SCC and report some preliminary re-
sults. Our software SVM exploits the commit-reconcile and
fence (CRF) memory model[12] to guarantee release consis-
tency[3]. Optimizing compiler techniques make our software
SVM easy to use. Since the memory consistency model is
implemented by software, any memory consistency model
can be implemented in our SVM without any hardware sup-



port if it can be specified by the CRF memory model. We
evaluate the effectiveness of our approach by comparing the
software SVM with a cache-coherent NUMA machine us-
ing three synthetic micro-benchmark applications and five
applications from SPLASH-2[15].

2. RELATED WORK
There have been many studies done on software SVM sys-

tems for distributed memory multiprocessors[1, 5, 7, 8, 9, 10,
11, 13]. Most of them guarantee memory consistency and
coherence at the page level. They are based on a page fault
handling mechanism to detect pages that are accessed by
a processor. They also support multiple writers protocols
to avoid page pingponging between processors due to false
sharing. These protocols are typically based on maintaining
a copy of the original page (e.g., creating a twin) and com-
paring the modified page to the copy (e.g., making a diff).
There are two major differences between our proposal and
theirs. First, we do not maintain twins and we do not have
any process for making diffs. Based on the CRF memory
model, a compiler or programmer identifies the data that
should be updated to the main memory or that should be
brought from the main memory. Second, our proposal does
not require a complicated protocol between processors be-
cause the main memory can be configured to be physically
shared between different SCC cores by modifying the LUT
(however, note that the cores in the SCC do not have a sin-
gle, globally shared address space). What we need to do is
just copying the data between a private memory region and
the shared memory region in the SCC according to a much
simpler protocol.

Inagaki et al. [6] propose a compiler technique to improve
the performance of a page-based software SVM system. The
compiler generates write commitments that are sent to all
other nodes to immediately update or invalidate the modi-
fied memory region when a synchronization operation is per-
formed. Similar to their approach, our approach is based on
a compiler technique. However, thanks to the reconcile op-
eration before a read operation in our approach, the updates
do not need to be immediately reflected to other local pages
at a synchronization point. Moreover, our approach does
not need to update or invalidate the entire page.

3. MEMORY CONSISTENCY
In this section, we briefly describe the technique that is

used to guarantee memory consistency and coherence in our
software SVM.

The CRF memory model is a mechanism-oriented mem-
ory model[12]. In addition to a semantic cache, called a
sache, it has three consistency operations: commit, recon-
cile, and fence. All load and store operations are executed
only on saches locally. These operations cannot access the
main memory directly. To update the main memory, pro-
grammers or compilers should insert commit or reconcile op-
erations appropriately. The model assumes memory accesses
can be reordered as long as data dependences are preserved.

A commit operation updates the local data to the main
memory if the address is cached in the sache and its state
is dirty. A reconcile operation purges the data in the sache
if the address is cached and its state is clean. Fence opera-
tions are used to enforce ordering between memory accesses.
These commit, reconcile, and fence operations are realized
in system calls in our software SVM. Our software SVM de-
fines release consistency (RC)[3] for its memory consistency
model.

for(i = start; i < end; ++i) {
a[i] = a[i] + b[i];
priva += a[i];

}

lock(s);
for(i = 0; i < n; ++i) {

c[i] += priva;
}
unlock(s);

(a)
shared(&a, &b, &c);

for(i = start; i < end; ++i) {
reconcile(&a[i],1,0,sizeof(a[i]));
reconcile(&b[i],1,0,sizeof(b[i]));
a[i] = a[i] + b[i];
priva += a[i];
commit(&a[i],1,0,sizeof(a[i]));

}

lock(s);
for(i = 0; i < n; ++i) {

reconcile(&c[i],1,0,sizeof(c[i]));
c[i] += priva;
commit(&c[i],1,0,sizeof(c[i]));

}
unlock(s);

(b)
shared(&a, &b, &c);

reconcile(&a[start],1,0,sizeof(a[start])*(end-start));
reconcile(&b[start],1,0,sizeof(b[start])*(end-start));
for(i = start; i < end; ++i) {

a[i] = a[i] + b[i];
priva += a[i];

}

lock(s);
reconcile(&c[0],1,0, sizeof(c[0])*n);
for(i = 0; i < n; ++i) {

c[i] += priva;
}
commit(&a[start],1,0,sizeof(a[start])*(end-start));
commit(&c[0],1,0,sizeof(c[0])*n);
unlock(s);

(c)

Figure 2: Code translation based on the CRF model
to guarantee RC. (a) Original code. (b) After insert-
ing commits and reconciles. (c) The final code.

To implement RC, the CRF model defines acquire and
release operations in RC as follows:

release(s) ≡ commit(*);preFenceW(s);unlock(s);
acquire(s) ≡ lock(s);postFenceR(s);reconcile(*);

To define a release operation in RC, all dirty data in the
sache must be updated to the main memory by commit(*)
before unlock(s) is performed. preFenceW(s) makes any
memory access preceding it to be completed before writing
to location s. To define an acquire operation in RC, after
lock(s) has been performed, postFenceR(s) makes all load
operations to location s to be completed before any mem-
ory access following it is performed. Then, reconcile(*)
purges all the clean data in the sache. In our software SVM,
preFenceW(s) and postFenceR(s) are combined with un-
lock(s) and lock(s), respectively. That is, unlock(s) and
lock(s) perform these fence operations in addition to their
original function.

We add commit and reconcile system calls to the SCC
Linux kernel. When a commit or reconcile operation occurs
in the application, the request is sent to the kernel with the
following arguments:

• Start address: the address of the first data item to
commit or reconcile.



• Number of data items: how many data items to com-
mit or reconcile.

• Stride: the distance between two consecutive data items
in bytes.

• Size: the size of a data item in bytes to commit or
reconcile.

Consider the code in Figure 2 (a) and assume arrays a, b,
and c are shared. To run the code on our software SVM,
the compiler or programmer declares the arrays as shared ar-
rays (Figure 2 (b)). Then, a reconcile operation is inserted
before every read reference to the shared arrays, and a com-
mit operation is inserted after every write reference to the
shared arrays. As an optimization, reconcile and commit
operations can be reordered and coalesced according to the
rules specified in the CRF model. Since we assume RC, com-
mit operations are moved as close as possible to unlock(s)
and reconcile operations are moved as close as possible to
lock(s) (Figure 2 (c)). Then, those operations are coa-
lesced together. Moving commit and reconcile operations
as close as possible to synchronization operations increases
the chance of coalescing those operations. This significantly
reduces the system call overhead.
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Figure 3: The organization of the runtime system.

4. RUNTIME SYSTEM
Figure 3 shows the organization of our runtime. SCC

Linux is running on each core. The system memory space
allocated to each core is divided into two regions: private
and shared. The private region is private to the core, and
a space in the private region is dedicated to the Linux OS.
The remaining space in the private region is allocated to a
sache. When a multi-threaded application is running, its
shared data is placed in the shared region. The shared re-
gion is configured to be uncacheable to L1 and L2 caches by
the OS. We modify the SCC linux kernel and add some fea-
tures (e.g., CRF system calls) to support executing multi-
threaded applications. The kernel on each core maintains
two page tables: a private page table (PPT) and a shared
page table (SPT). The PPT is private to each core and is
similar to the page table found in a conventional virtual
memory system. It maps each core’s virtual address to a
physical address in the sache. The SPT is shared between
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Figure 4: The LUT for an SCC core.

all cores and maps each core’s virtual address to a physical
address in the shared region. A space in the shared region
is allocated to the SPT itself.

LUT setting. Figure 4 shows the LUT used by each SCC
core in our software SVM. The gray area in the LUT shows
the mapping between each core’s physical address space to
the system memory address space for the private and shared
regions. As a result of the LUT setting, each core sees the
same system memory segment with the same LUT index in
the shared region and a different system memory segment
with the same LUT index in the private region. The set of
system memory segments allocated to the private region of
a core is disjoint from that of another core.

Thread manager. When we run a multi-threaded appli-
cation on top of our software SVM, we make each core run
the same copy of the application. When the system function
exec is invoked, the kernel checks whether an environment
variable SCC_SVM is set. If so, this indicates that the ap-
plication will be running on our software SVM. Then, only
core 0 (say, master) continues its execution. Other cores
are waiting for a wake-up event from the master. When the
master creates a thread (e.g., by calling pthread_create),
it sends a wake-up message to a waiting core in a round-
robin manner. The message contains information about the
address of the function to be executed, arguments of the
function, and the stack pointer, to run the created thread
on the target core. Then, the woken-up core starts execut-
ing the designated function. This process is managed by the
thread manager added to the SCC Linux kernel. The thread
manager provides POSIX thread library routines.

Page fault handler. We also modify the page-fault han-
dler in the SCC Linux kernel. To explain the function of the
modified page-fault handler, consider the scenario shown in
Figure 5. Assume that core i is the first core that accesses
a shared page p with the virtual address V Ap among all
cores. In turn, core j accesses p for its first time with V Ap.
Since the software SVM provides a single, shared address
space between all the cores, each core has the same virtual
address for the same shared page.

When core i accesses the shared page p, a page fault oc-
curs. The first part of the page fault handling process is
similar to that of the conventional process and allocates a
page frame pi in its sache (Ê). Then, the handler initializes
pi (e.g., p is a page in .bss section). Following this, the han-
dler looks up the SPT with V Ap after obtaining the page
lock for the SPT entry of V Ap. The SPT entry for V Ap is
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invalid because p is accessed for the first time. The handler
sets up the SPT entry to point to the LUT index of p (Ë).
Then, it copies pi to p (Ì) and releases the page lock. Core
i starts to access the private copy pi of p in its sache.

Now, the page-fault handler of core j acquires the page
lock. Since the SPT entry of V Ap already points to the
LUT index that is associated with p, after allocating the
page frame pj in core j’s sache (Í), the handler copies p to
pj (Î). Then, core j starts to access the private copy pj of
p in its sache.

Table 1: Applications Used
Code Problem Size
FFT 4M points
LU/C 4096x4096 matrix, 16x16 blocks
LU/N 4096x4096 matrix, 16x16 blocks
RADIX 16M integers, radix 1024

OCEAN/C 1026x1026 ocean

Table 2: System Configurations
Cache-coherent NUMA Machine (cc-NUMA)

CPU AMD Opteron 6174
Core frequency 2.2GHz
# of sockets 4

Cores 12 per Socket, total 48 cores
L1 I-cache 64KB per core
L1 D-cache 64KB per core
L2 Cache 512KB per core
L3 Cache 12MB per socket

Main memory 96GB
Compiler GCC 4.1.2

Single-Chip Cloud Computer (SCC)
Core type P54C IA core

Core frequency 533Mhz
# of Cores 48
L1 I-cache 16KB
L1 D-ache 16KB
L2 Cache 256KB

Main memory 32GB
Compiler GCC 3.4.5

5. EVALUATION
In this section, we evaluate our software SVM by compar-

ing its performance with a cache-coherent NUMA machine
(cc-NUMA).

5.1 Methodology
Machines. The architecture configurations of the SCC

and the cc-NUMA machine are described in Table 2. The cc-
NUMA machine has four 12-core AMD Opteron processors
in a single system. It is supported by a broadcast-based
hardware cache coherence protocol[2].

Benchmark applications. In addition to three syn-
thetic micro-benchmark applications: FalseSharing, NoFalse-
Sharing, and LocalDataAccess, we use five applications from
the SPLASH-2 benchmark suite[15] for the evaluation. The
problem size of each SPLASH-2 application is shown in Ta-
ble 1. FalseSharing is a program that increments each ele-
ment of an array in a loop with many iterations. The size
of an array element is a single byte. The array is equally di-
vided into c·N chunks, where N is the number of threads and
c is an integer greater than or equal to 1. Each thread is in
charge of c chunks and the chunks are distributed cyclicly to
each thread. The chunk size is smaller than the cc-NUMA’s
L2 cache line size (64 bytes). Thus, a significant amount
of false sharing occurs in FalseSharing. NoFalseSharing is a
program that is similar to FalseSharing, but the chunk size
is exactly the same as the cc-NUMA’s L2 cache line size and
each cache block is aligned to a cache line boundary. Local-
DataAccess is a program that does not cause any L1 cache
misses but cold misses. Its data access always hits in the L1
cache. We would like to observe maximal scalability with
LocalDataAccess.

Software SVM for the SCC. We implement the run-
time for the software SVM by modifying the SCC Linux
kernel. We insert commit and reconcile operations manually
into the applications and optimize them by hand according
to the rules specified in the CRF memory model.
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Figure 6: Speedup of the micro-benchmark applica-
tions.

5.2 Result
Figure 6 shows the evaluation result with the three micro-

benchmark applications. The speedup is obtained over a sin-
gle core. For FalseSharing, our software SVM does not suffer
from false sharing as the number of cores increases while
cc-NUMA suffers from heavy false sharing. Even though
pages are falsely shared in our software SVM for FalseShar-
ing and NoFalseSharing, after an SCC core obtains a page in
its sache, all accesses to the page occur in the sache, and the
updates are committed altogether later to the system mem-
ory without any diff process. Interestingly, false sharing is
not a source of the scalability bottleneck in our approach.

When we see the speedup of LocalDataAccess, both of the
SCC and cc-NUMA scale almost linearly. When the number
of cores increases (e.g., 32 and 48), the speedup of the SCC
is a little bit worse than that of the cc-NUMA. This is due
to the overhead of looking up the SPT (e.g., page lock con-
tention and uncached system memory access). In addition,
the overhead of copying pages from the system memory to
the sache (e.g., uncached system memory access) takes more
portion in the total execution time as the number of cores
increases.

Figure 7 shows the evaluation result with the five SPLASH-
2 benchmark applications. FFT, RADIX, and OCEAN/C
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Figure 7: Speedup of the SPLASH-2 benchmark applications.

do not have the result for 48 cores because these applications
require the number of cores to be a power of two. For all
applications but RADIX, the SCC with our software SVM
shows better scalability than the cc-NUMA machine. As the
number of cores increases, the speedup also increases for the
SCC. However, the speedup with 48 cores in cc-NUMA is
often worse than that with 32 cores. This is due to false
sharing and manifests in the speedup of LU/C and LU/N
with 48 cores because LU/N’s data accesses are optimized
to avoid false sharing.

RADIX executes many spin-wait loops. A flag variable is
read repeatedly in the spin-wait loop. In our software SVM,
implementing a spin-wait loop requires a reconcile operation
to be placed in the loop for the flag variable. Consequently,
frequent updates to the flag variable in the sache through the
reconcile system call incur a significant overhead. This can
be solved with either hardware support or by modifying the
application with a post-wait synchronization mechanism.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose an efficient software SVM for

the SCC. It is based on the CRF memory model and guar-
antees release consistency. Legacy multi-threaded applica-
tions can be run on top of the software SVM without any
modification. Due to the CRF memory model and compiler
support, we do not need to implement a complicated mul-
tiple writer protocol that manages the process of creating
twins and making diffs. This makes the runtime much sim-
pler. Since the memory consistency model is implemented
by software, any memory consistency can be implemented in
our software SVM if it can be specified by the CRF model.
Based on the preliminary evaluation result that compares
our software SVM with a cc-NUMA machine, we foresee
such a software SVM can be an alternative to a hardware
cache coherence protocol for the SCC-like manycore archi-
tectures. As future work, we plan to develop a compiler
and its techniques for optimizing commit and reconcile op-
erations based on their properties. In addition, we plan to
evaluate our software SVM with more multi-threaded appli-
cations.
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