
AutoLog: Facing Log Redundancy and Insufficiency

Cheng Zhang1, Zhenyu Guo2, Ming Wu2, Longwen Lu1, Yu Fan1

Jianjun Zhao1, Zheng Zhang2

1Shanghai Jiao Tong University, 2Microsoft Research Asia
{cheng.zhang.stap, nowen, yuf, zhao-jj}@sjtu.edu.cn
{Zhenyu.Guo, miw, Zheng.Zhang}@microsoft.com

ABSTRACT
Logs are valuable for failure diagnosis and software debug-
ging in practice. However, due to the ad-hoc style of in-
serting logging statements, the quality of logs can hardly be
guaranteed. In case of a system failure, the log file may con-
tain a large number of irrelevant logs, while crucial clues to
the root cause may still be missing.
In this paper, we present an automated approach to log

improvement based on the combination of information from
program source code and textual logs. It selects the most
relevant ones from an ocean of logs to help developers focus
and reason along the causality chain, and generates addi-
tional informative logs to help developers discover the root
causes of failures. We have conducted a preliminary case
study using an implementation prototype to demonstrate
the usefulness of our approach.

1. INTRODUCTION
Making complex software is hard, and getting them cor-

rect is often harder. Despite many progresses made by the
research community, the adoption of advanced formal proce-
dures and tools has been slow. Logging by printf is the pre-
dominant debugging practise, and will likely remain so for
many years to come. In many ways, logging statements (i.e.,
the statements to print logs) can be collectively regarded as
a “program” over the program under debugging. They rep-
resent the developers’ effort to observe the inner working
of the program, revealing expected or erroneous behavior.
They are convenient to add, and do not create side effects,
other than some (hopefully) minor runtime overhead.
This freedom comes with a cost. The practise of logging is

ad-hoc. Logging statements accumulate over time by differ-
ent developers, and the quality of the logs has never been a
focus of either the research or the development community.
Once hitting a bug, we are overwhelmed by the voluminous
logs. Filtering by “grepping” reduces the overload to certain
degree, but using the logs to reason about the causality is
still difficult, since the relationships between the logs are ob-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

scure. Yet, many critical logs that could have led to quick
discovery of the bug can still be missing.

Rooting out the bugs is ultimately the responsibility of
the developer. Acknowledging the fact that logging is the
critical debugging exercise, and that debugging is typically
interactive, AutoLog attempts to provide a set of practical
techniques to improve the utility of logs. More specifically,
we make the following contributions:

1. log slicing combines program analysis techniques and
information provided by the logs, and presents only
the relevant (though conservative) logs, framed over
causality chain.

2. if and when the developer requires further probing, log
refinement inserts new logging statements, prioritized
by their degree of uncertainty reduction.

This paper describes the prototype architecture of Au-
toLog. Our early experience of using it against a real-world
complex software (Apache Hadoop Common) has shown the
promise of the direction.

The rest of this paper is organized as follows. Section 2
gives an overview of our approach. Section 3 describes the
technical details. Section 4 briefs the prototype implementa-
tion and shows the result of a case study. We discuss related
work and our future plan in Section 5.

2. OVERVIEW
Target scenario. We imagine that AutoLog will be used
in an interactive debugging session. Our target scenario is
pre-release in-house development, where the source code is
available. When the session starts, there is at least one log
available, namely the one corresponds to the failure site.
That starting log, which can be an error message, an asser-
tion failure, or an exception, may or may not contain other
rich information. For our prototype we have assumed that
the stack trace and the variable that triggered the failure are
available when the failure is reproduced for the first time.
This is a constraint that we might remove in the future.

From that starting log, typically developers will explore
backward, searching for an answer to explain why the bug
has occurred; they might also explore along the execution
flow forward to consolidate their understanding of the pro-
gram behavior. When they cannot clearly pinpoint the root
cause yet but have formed some clues, they may choose to in-
sert additional logging statements in subsequent runs. Once
they have identified the bug and installed the corresponding
fix, the program is run again, and this cycle might repeat.
Debugging using AutoLog. Figure 1 shows the AutoLog
architecture as well as the flow; our current prototype only

log
refinement

instrumented
program

program

execution

program
slicing

slice-DB

logs

log
slicing

highlighted
logs

user

find the root cause

need more logs

Figure 1: The Architecture of AutoLog.

contains part of the system. The components of AutoLog are
called into play in different stages of the debugging session.
In the offline part of the process, AutoLog takes the source

code and generates a conservative set of slices and stores
them into a database (i.e., the slice-DB in the figure). A
slice is the set of statements that may affect the value of a
specific variable at a specific program location (the pair of
variable and location is called slicing criterion). Slice-DB
may contain only a subset of all possible program locations,
as computing slice is expensive. Selecting good candidates
for the slice-DB is itself an interesting topic. For now, we
start with the logging statements, as they are inductive: the
fact that the developer has added an entry there means that
she wants to know more about the “what” at that point, and
we might as well be prepare to answer the “why”.
When the debugging session starts, AutoLog takes the

starting log, and explores backwards from the closest entry
in the slice-DB. During this step, it also scans through the
logs, taking the runtime information that they might con-
tain, and prunes the conservative slice(s) with an approach
that we call log slicing (see Section 3). The end of this scan
process will produce the set of logs that are aligned along
the causality chain. Only these logs are presented to the
developer. It is critical to optimize the performance of log
slicing, as it directly affects the usability of the tool.
Typically, when the developer studied the logs and the rel-

evant part of the code, she would have formed at least some
clues as why the bug has appeared. If the exact root cause
remains elusive, it means that more information is needed.
New logging statements can be manually added, as is done
today. AutoLog goes further, it computes and instruments
new logging statements based on a set of heuristics to reduce
ambiguity aggressively. This part of the process is called log
refinement, and will be detailed in Section 3.
We believe that the above interactive debugging process

is typical, in which AutoLog embeds naturally. This ap-
proach has a number of challenges, however. For instance,
we assume that the bug is deterministic and can be triggered
again. There is also the weakness associated with the slicing
technique itself, such as the difficulty to handle aliases and
shared variables across threads. We will delay the discussion
on the challenges and limitations until Section 5.

3. APPROACH
The goal of AutoLog is to aid, not to replace, a program-

mer in her pursuit to discover and fix the bug. Since de-

bugging involves reasoning about causality, AutoLog relies
on slicing [5] as the underlying technology. The original
program slicing is based on static (data and control) depen-
dencies, thus the slice contains all the statements that may
affect the slicing criterion in any possible execution. In con-
trast, dynamic slicing focuses on dependencies that occur
in a specific execution. Therefore, the dynamic slice con-
tains the statements that have actually affected the slicing
criterion in one execution.

In the example shown in Figure 2, using statement 13 and
variable a as slicing criterion, we get a static slice which con-
sists of all the statements except statement 10. Statement 10
calls the logger which reads variable a; it could be included
in the slice by data dependency if it wrote variable a. In an
execution, if p is 1 and method read() returns 2 and 0 at
statements 1 and 5, respectively, then the assertion at line
13 fails. In this case, the dynamic slice contains statements
2, 3, 4, 5, 6, 8, and 13. ���������� void m(int p){

1. int a = read();
2. if(p % 2 == 1){
3. a = p;
4. if(a > 0){
5. int tmp = read();
6. if(tmp > 0){
7. a = a * tmp;
 }else{
8. a = a * (-1) * tmp;
 }
 }else{
9. a = a + p;
 }
10. log.info(a);
 }else{
11. if(a == p){
12. a = 2;
 }
 }
13. assert(a != 0);
 }

1

3

12

13

2

4

5

9

11

10

7 8

6

Figure 2: A program and its control-flow graph. Nodes

surrounded by dashed border represent the static slice

pruned by control flow relations. Nodes with pat-

tern/shaded background represent the dynamic/hybrid

slice. Note that the data dependency graph, which is

necessary for computing the slices, is omitted for brevity.

Both static and dynamic slices rooted from the failure site
(line 13) contain the culprit (line 5). However, the dynamic
slice is far more precise. The tradeoff is that, while static
slice can be computed offline, dynamic slice requires heavy
instrumentation to acquire the entire execution trace, in ad-
dition to computation of the slice.

The core idea of AutoLog is to refine the scope of static
slices using the dynamic information already made available
from the printed logs. The advantage is that the expensive
operations, such as computing dependency graphs and static
slices, are strictly offline from a debugging perspective. Fur-
thermore, when new logging statements are inserted, static
slices do not change and can be reused. The online part of
the refinement is hopefully very light weight, therefore max-
imizing the usability of the tool. To achieve this goal, log
slicing in AutoLog is hybrid, in the sense that both static
and dynamic information are used.

Given a log file, AutoLog first parses the textual logs and
maps them to the corresponding logging statements. Cur-

all program statements

static slice

hybrid slice

dynamic slice

logs

failure site

root cause

Figure 3: The relationship between different kinds of

slices and logs.

rently we assume that the logs are produced with general
logging frameworks, such as log4j, so that the exact loca-
tions of logging statements can be included in logs and easily
parsed from logs. With this assumption, the mapping be-
tween logs and logging statements is straightforward. How-
ever, as discussed in prior work [6, 7], a more general log
parsing technique is often necessary, since many systems ac-
tually have their own logging mechanisms. We are develop-
ing a log parser targeting object-oriented programs. It is an
extension to the log parser proposed in [6] and will address
the complexity of string manipulation based on [2].
The goal of AutoLog’s log slicing is to classify statements

in the corresponding static slice into groups of must, may,
and must not and then refine the slice. This is done in
two steps: 1) pruning and 2) re-slicing. The pruning step
filters out from the static slice the statements that must
not have been executed. This step is trivial to compute, an
essentially reachability analysis starting from the executed
logging statements. In Figure 2, the log printed by node 10
will prune away nodes 11 and 12. We can also conclude that
nodes 1, 2, 3, 4, and 13 must have been executed, because
nodes 1, 2, 3, and 4 dominate node 10 and node 13 post-
dominates node 10. These results are useful already; an
experienced developer might have already concluded that
statement 5 is where the problem is.
In the re-slicing step, the hybrid slice is computed using

the pruned static slice as well as the control-flow graph. In
Figure 2, because nodes 11 and 12 are excluded, the assign-
ment at node 12 can never affect the slicing criterion. In
addition, as one branch of node 2 has been pruned, the as-
signment at node 1 can no longer affect the slicing criterion
(the definition is “killed” by the assignment at node 3). As
a result, the hybrid slice is {2, 3, 4, 5, 6, 7, 8, 9, 13}. Com-
pared with the original static slice, the hybrid slice contains
three statements fewer (namely, statements 1, 11, and 12).
This reduction is achieved with purely the position of the
executed logging statement. Moreover, the observed value
in the logs can be picked up by a constraint solver, which
potentially refines the slice further, as is done in SherLog [7].
In the example, using the value exposed at node 10 (i.e., a,
which is 0), node 9 can be excluded too. Investigating the
utility of a constraint solver is one of our future works.
Figure 3 illustrates the relationship between logs and the

different kinds of slices (namely static, dynamic, and hy-
brid slices) with respect to a given slicing criterion. Static

and dynamic slices are represented by squares with dashed
borders, since AutoLog does not directly present the entire
static slice, nor does it attempt to capture the dynamic slice.
Obviously, hybrid slice is a subset of static slice and a super-
set of dynamic slice. The common property of these slices is
that they all contain statements that may affect the slicing
criterion. This property does not hold for logs, since there
may be a lot of logs that are irrelevant to the failure. The
shaded rectangle represents the intersection of dynamic slice
and logs1. Only the logs in this rectangle will be presented
to the developer, aligned with statements in the static slice.
In other words, AutoLog intrinsically solves the problem of
information overloading caused by irrelevant logs.

However, the sparsity of logs in practice might lead to in-
formation “underloading” instead, that is, there are missing
logs that could have helped to pinpoint the bug. Conceptu-
ally, this happens when the root cause is not “covered” by
the existing logs, as shown in Figure 3. A developer might
add new logging statements, and then rerun the test. In log
refinement, AutoLog automates this step by proposing and
adding new logging statements. The net effect is to enlarge
the set of logs (i.e., the lower right rectangle in Figure 3),
while shrinking the hybrid slice towards the dynamic slice to
cover the failure’s root cause (RC). Since the dynamic slice
consists of all the statements that are actually relevant to
the failure, it must contain RC. In addition, as the hybrid
slice (HS) is a superset of the dynamic slice, it certainly con-
tains RC, too. When RC is not contained in the highlighted
logs (HL), it must belong to the set R = HS −HL.

AutoLog iteratively selects some locations from R to in-
sert new logging statements and re-executes the program to
generate new logs. We follow a group of heuristic rules, with
the goal to approach the root cause quickly with fewer logs:
Rule of loop avoidance. If a new logging statement is
inserted in a loop, then it is likely to be executed for multi-
ple times, which generates bloated log files. This rule avoids
inserting logging statements in loops. More specifically, Au-
toLog calculates the depth of nested loops where candidate
statements reside. Then the statements are sorted by the
depth in an ascending order.
Rule of control-flow uncertainty reduction. During
debugging it is often helpful to know whether certain state-
ments have been executed in the failing run. In order to
reduce the uncertainty of control-flow, AutoLog inserts new
logging statements at the statements (in R) that may have
been executed. Moreover, AutoLog prefers to choose the
statements with higher power of uncertainty reduction. As
previously described, the execution of one statement can be
used to determine a group of statements which must have
been executed (denoted as M) as well as a group of state-
ments which must not have been executed (denoted asMN).
When applying this rule, AutoLog first calculates the num-
ber |M

∪
MN | for each candidate statement to represent

its power of uncertainty reduction and then sorts the candi-
dates by the number in a descending order. In our example,
the number |M

∪
MN | for nodes 5, 6, 7, 8, 9 is 2, 2, 4, 4,

4, respectively2. Therefore, AutoLog ranks nodes 7, 8, and
9 higher than nodes 5 and 6.

1More exactly the shaded rectangle represents the logging
statements that are control-equivalent to some statements
in the dynamic slice.
2For instance, for node 7, M is {5, 6} and MN is {8, 9},
thus its |M

∪
MN | is 4.

1: function RefineLogInMethod(method)
2: for all stmti ∈ method.stmts do
3: calculate its depth of loops, di
4: calculate its number ni = |Mi

∪
MNi|

5: calculate its number of interesting variables, mi

6: end for
7:
8: NumStmts ← method.stmts.size
9: sort method.stmts by dk, 1 ≤ k ≤ NumStmts, in an

ascending order
10: sort the tying statements in method.stmts by nk, 1 ≤

k ≤ NumStmts, in a descending order
11: sort the tying statements in method.stmts by mk, 1 ≤

k ≤ NumStmts, in a descending order
12: choose the top one statement, topStmt
13: compute the interesting variables at topStmt, vars
14:
15: create a new logging statement logStmt
16: logStmt.location ← topStmt
17: logStmt.variables ← vars
18: insert logStmt into method.code
19: end function

Figure 4: Algorithm of log refinement for one method

Rule of value uncertainty reduction. If a logging state-
ment resides at a location at which many relevant variables
are accessible, then it can reveal valuable information of run-
time program state by printing the values of these variables.
When applying this rule, AutoLog first calculates the set of
visible interesting variables for each candidate statement. A
variable is said to be interesting if it is in the data flow set
before the statement in the data flow analysis during pro-
gram slicing, that is, its value may be relevant to the slicing
criterion. Then AutoLog sorts the candidates by the num-
ber of visible interesting variables in a descending order. In
the example in Figure 2, since the interesting variable tmp

is accessible at nodes 7 and 8 (but not at node 9), AutoLog
prefers to choose either of nodes 7 and 8 as the candidate
location to insert a new logging statement.
AutoLog applies the rules in the order they are described3

and selects the location to insert the new logging statement
from the top statement(s) for each method. If there are
multiple top statements, AutoLog randomly chooses one of
them. Therefore, in each iteration AutoLog inserts at most
one new logging statement in each method to control the
total amount of logs that will be generated. We also take
care to print variables that have already been initialized at
the new logging points, based on data flow information gen-
erated during program slicing. Figure 4 shows the algorithm
of log refinement for a method.
Trade-offs. In theory, slices are computed using both con-
trol and data dependencies in order to conservatively include
all the statements which may cause the failure. In practice,
as discussed in [4], many bugs can be discovered by explor-
ing data dependency. Moreover, control dependency can be
converted to data dependency of the corresponding branch-
ing statements in structured programs. Therefore, AutoLog
makes the trade-off between precision and efficiency, in that
it does not use control dependency during slicing. As a re-
sult, the slices may fail to include clues to bugs, but the
size of slices can be reduced. In case the developer finds
that a control dependency is too important to ignore, she
can manually specify the corresponding branching statement

3Specifically, the application of a rule may only change the
order of the candidate statements that have been ranked the
same by the previous rule.

and variable as slicing criterion, and re-launch AutoLog.
The hybrid slicing algorithm of AutoLog is inter-procedural,

that is, it will track data dependencies across procedure
boundaries by following calling relations. When performing
slicing in a method m, AutoLog will explore forward into the
relevant methods called by m and backward into the methods
that call m. The inter-procedural slicing is necessary for Au-
toLog to capture the root cause which does not reside in the
same method with the error-reporting logging statement. In
order to allow the hybrid slicing to handle large-scale sys-
tems, we impose two restrictions on the slicing procedure:

• In the forward exploration, the slicing procedure does
not explore further along a call chain if a cycle is en-
countered (i.e., there are recursive calls).

• We augment each logging statement with an extra state-
ment to record the stack trace. In this way, we can ob-
tain the exact runtime stack trace of the starting log.
Therefore, when performing backward exploration, the
slicing procedure only has to explore the methods along
the recorded stack trace, instead of all the call chains
leading to the current method. Note that we just have
to record the stack trace during the first execution in
which the failure is reproduced. Once the failure has
been observed, we can turn off the stack trace record-
ing to reduce overhead in subsequent re-executions.

4. PRELIMINARY CASE STUDY
We have implemented a prototype of AutoLog on top of

the Soot framework4 which supports various program analy-
ses on Java programs. We have not implemented the offline
part that prepares the slice-DB. Rather, when performing
log slicing, the slice is computed from scratch.

We now describe a proof-of-concept case study on Apache
Hadoop Common, the core sub-project of the Apache Hadoop
distributed computing framework5.

In the case study, we have used the prototype to de-
bug a reported bug6 for Hadoop Common version 0.19.0.
The bug manifests itself as a reproducible test case fail-
ure caused by an IOException. The bug is in the method
listStatus of class SequenceFileInputFormat, a subclass
of class FileInputFormat. The correct behavior of the method
is to return the list of files contained in the variable file, if
file is a directory. However, if one of the files is indeed a
directory, rather than returning the status of that directory,
the buggy implementation returns a new file object with
attribute isdir as true.

The exception is thrown from method getSplits in class
FileInputFormat. Before splitting files, the method checks
whether the files, retrieved via a call to method listStatus,
are actually files rather than directories. The tricky part
is that class FileInputFormat has its own implementation
of method listStatus, which has been overridden in class
SequenceFileInputFormat. Thus the method call to method
listStatus in method getSplits have two possible targets,
and only when the underlying object is an instance of class
SequenceFileInputFormat7, the IOException will occur.

4http://www.sable.mcgill.ca/soot/
5http://hadoop.apache.org/
6https://issues.apache.org/jira/browse/HADOOP-3946
7Besides SequenceFileInputFormat, there are several sub-
classes of FileInputFormat.

In the original log file generated by the failed test run,
there were 86 lines of logs. AutoLog highlighted 17 logs, con-
taining the most relevant logs printed in method listStatus

of class FileInputFormat. The rest of the logs were mostly
about the progress of map/reduce tasks, which were irrel-
evant to the exception. However, the 17 highlighted logs
might be insufficient for finding the bug, and even a bit mis-
leading. Because the last line of log was printed in method
listStatus of class FileInputFormat, developers might con-
clude that the erroneous files were returned from this method.
Since the implementation of this method is complex, devel-
opers might waste a lot of time and fail to find the real bug
in method listStatus of class SequenceFileInputFormat.
Therefore, we used the prototype to insert new logging state-
ments and re-ran the test case. After two iterations of refine-
ment, the logs successfully covered the root cause. The last
two lines of logs were printed from method listStatus of
class SequenceFileInputFormat and method isDir of class
FileStatus, which made the bug quite obvious.
Although the prototype succeeded in revealing the bug,

the final log file contained as many as 1778 lines of logs.
It was mainly due to our unsophisticated rules of log re-
finement. For example, the current rule only tries to avoid
inserting logging statements in explicit loop structures in the
scope of a method. However, in the case study, a number
of logging statements were inserted into methods that were
called from within loops in their callers.
The case study was conducted on a Linux server, which

has a 2.33GHz quad-core CPU and 16 GB main memory.
The average runtime of each iteration (including log slicing
and log refinement) is about 11 minutes. For Hadoop Com-
mon, which has more than 143K lines of code, the runtime is
probably acceptable. Our existing prototype does not allow
easy estimation of how much time can be moved to offline.
However, we are optimistic that a good portion will be.

5. DISCUSSION
The exercise of debugging asks the programmer to act as

a detective. Having arrived at the crime scene, she needs
to reconstruct the sequences of events, reasoning about the
“why” and “how” along the way. Building a time machine
that allows replaying the entire execution path represents
one type of tools. The spectrum includes tools such as R2
[3] that relies on instrumentation at the boundary of non-
determinism, to SherLog [7] that infers the paths with the
combined knowledge of runtime logs and program structure
(via constraint solving).
Replaying tools narrow down the search space to concrete

execution instances, but do not solve the problem of con-
structing the path that connects failure site to root cause.
In addition, knowing the entire execution history may not
be necessary.
At the other extreme of the spectrum, there are bug de-

tection tools that try to directly identify common mistakes
(e.g., use-after-free [1]). These faulty patterns are shortcuts
to directly flag not only the manifested bugs but also the
potential ones. However, we argue that discovering causal-
ity interactively is the most common case, and needs better
tools. A natural starting point is to leverage the technique
of slicing [5].
AutoLog is somewhere in between. We target the sce-

nario of interactive in-house development, in which quick
turnaround time is critical. This is achieved by splitting

offline static slice preparation from online log slicing and re-
finement. We share the same philosophy as LogEnhancer
[8], in that the existing logs are treated as heuristics and
starting points, and a tool is free to modify them, as well as
to insert new ones.

Our future work has a few focuses:

1. For log slicing, simply pruning the static slices with
log positions, performing hybrid slicing, and calling
a constraint solver incrementally improves coverage,
with increasingly higher cost and longer delay. The
trade-offs there are complex, and we plan to quantify
them with a set of real examples.

2. The heuristics used in the current log refinement algo-
rithm is neither sophisticated nor well tested. Again,
this requires in-depth study over real examples.

3. Once the programmer formed concrete clues and in-
stalled new fixes, the static slices need to reflect these
changes. Improving the productivity requires us to re-
compute the slice-DB incrementally and efficiently.

4. The above process works well when non-determinism
is absent. This isn’t the case for many concurrent pro-
grams. We see the role of replay tools to remove the
randomness so that AutoLog can do its work with as
little as (and ideally no) uncertainty. How to leverage
these techniques is still an open question.

5. An orthogonal but important question is to understand
and improve the quality of the logs. If and when Au-
toLog is continuously applied throughout the develop-
ment process, it is possible to handle and manage the
logs better. As we mentioned earlier, the framework
of AutoLog can already detect redundant logs.

6. REFERENCES
[1] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,

S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and
D. Engler. A few billion lines of code later: using static
analysis to find bugs in the real world. Commun. ACM,
53:66–75, February 2010.

[2] A. S. Christensen, A. Møller, and M. I. Schwartzbach.
Precise analysis of string expressions. SAS’03, pages 1–18,
Berlin, Heidelberg, 2003. Springer-Verlag.

[3] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.
Kaashoek, and Z. Zhang. R2: an application-level kernel for
record and replay. In OSDI’08, pages 193–208, Berkeley, CA,
USA, 2008. USENIX Association.

[4] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. PLDI
’07, pages 112–122, New York, NY, USA, 2007. ACM.

[5] F. Tip. A survey of program slicing techniques. Technical
report, Amsterdam, The Netherlands, 1994.

[6] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan.
Detecting large-scale system problems by mining console
logs. SOSP ’09, pages 117–132, New York, NY, USA, 2009.
ACM.

[7] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and
S. Pasupathy. SherLog: Error diagnosis by connecting clues
from run-time logs. ASPLOS ’10, pages 143–154, New York,
NY, USA, 2010. ACM.

[8] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage.
Improving software diagnosability via log enhancement.
ASPLOS ’11, pages 3–14, New York, NY, USA, 2011. ACM.

