
Protected Hard Real-time: The Next Frontier

Bernard Blackham, Yao Shi and Gernot Heiser
NICTA and The University of New South Wales

Sydney, Australia
firstname.lastname@nicta.com.au

ABSTRACT
Hard real-time systems are typically written to execute either on
bare metal or on a small real-time executive that offers no mem-
ory protection. This model scales poorly as systems become more
complex and integrated, as is the trend in industry today. Design-
ing hard real-time systems on a protected OS is often avoided due
to the difficulty in predicting its response time.

Hard real-time systems with full virtual memory and memory
protection have been proposed previously. However, to our knowl-
edge, no such system has determined safe upper bounds on the la-
tency introduced by this protection.

This paper proposes that hard real-time systems can be con-
structed confidently and cost-effectively using an operating system
providing full memory protection and virtual memory. We contend
that a carefully written microkernel providing these mechanisms
has the ability to be used in a hard real-time system without overly
pessimistic response time guarantees. We use the seL4 microker-
nel as a case study, investigating how the features of seL4’s design
enable a highly accurate WCET analysis.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
Time and Embedded Systems; D.4.7 [Operating Systems]: Or-
ganization and Design—Real-time systems and embedded systems;
D.4.8 [Operating Systems]: Performance—Modeling and predic-
tion

General Terms
Design, Reliability, Performance

Keywords
Microkernels, worst-case execution time, hard real-time systems,
trusted systems

1. INTRODUCTION
Traditionally, hard real-time systems are constructed on hard-

ware with predictable timing characteristics and with minimal soft-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

ware “glue” between the application and the hardware itself. Such
systems are often developed without an operating system—on “bare
metal”—or use a lightweight real-time executive to schedule threads.
They offer no memory protection between components. The lack of
fault tolerance leads to a design that is difficult to confidently scale
to complicated systems which integrate several complex software
stacks on one processor.

Large systems often separate out critical real-time functionality
onto dedicated processors, such as the baseband processor found
on most smart phones. However, as manufacturers strive to gain a
competitive advantage by adding features to embedded devices, the
level of integration will only increase. Using dedicated processors
does not scale—for example, cars and aircraft are trending towards
combining both critical and convenience functionality, and the cost
and weight of tens or hundreds of processors is a serious issue.

An alternative solution to satisfy this growing trend is to con-
solidate these systems onto a single processor, and use an operat-
ing system to provide isolation between critical real-time compo-
nents and less critical time-sharing components [MHH02]. How-
ever, for hard real-time designs, this solution depends on the ability
to provide safe upper bounds on the interrupt latency of the OS. In
most systems, the interrupt latency is determined by the maximum
worst-case execution time (WCET) of all non-preemptible code in
the kernel.

It is possible to achieve very good interrupt latencies by making
the kernel fully preemptible. In this model, interrupts are permit-
ted to occur anywhere within the kernel, except within some small
protected regions of code, usually to modify critical data structures.
This gives typical interrupt latencies in the order of tens, or hun-
dreds, of cycles. However, this requires very careful coding of the
interrupt paths, and defensively analysing that at every point in the
kernel an interrupt cannot cause a crash or make the kernel’s state
inconsistent. Analysing concurrency issues of this nature is ex-
tremely challenging due to the explosion of possible interleavings
to consider and the difficulty in reproducing timing-related bugs.
Much research effort has been devoted to developing methods and
tools to identify such cases.

Many kernels do not allow interrupts to occur whilst executing
kernel code, or allow them only to occur at designated preemption
points. This greatly simplifies the design and testing of the kernel,
at the cost of higher worst-case interrupt latency. Well-placed pre-
emption points mitigate the issue, but still cannot achieve the small
latencies of the fully preemptible model.

As embedded processors become faster, guaranteed latencies in
the 100 000s of cycles become acceptable for many applications.
This, in turn, permits the integration of larger, more complex soft-
ware components into a single system, keeping device costs lower.
The challenge then for hard real-time systems is to compute a safe

mailto:firstname.lastname@nicta.com.au

upper bound on the interrupt latency of the kernel.
Safe upper bounds for WCET are generally computed using a

combination of static analysis techniques and measurements on real
hardware [KWRP05,PZH07]. Operating systems kernels have long
been an elusive target of static WCET analysis, due to their unstruc-
tured code, tight coupling with hardware, and sheer size. WCET
bounds based on measurements alone cannot be relied upon—for
example, estimated upper bounds from measurements stated for
RTLinux [YB97] were later shown to be invalid [MHSH01]. Sev-
eral kernels have been analysed using static analysis, including
RTEMS [CP01] and OSE [SEGL04, CEE+02], but these did not
support memory protection using paged virtual memory. To our
knowledge, no kernel providing full virtual memory and memory
protection has been successfully analysed for its WCET. An anal-
ysis was attempted on the L4 Pistachio kernel [SP07], but safe
WCET bounds were never established.

We assert that a well-designed microkernel lends itself to a tight
WCET analysis. This paper focuses on the seL4 microkernel and
presents it as a viable solution for creating hard real-time systems
with very strong isolation properties.

1.1 seL4 as a Hard Real-time Platform
seL4 [KEH+09] is a third-generation microkernel, broadly based

on the concepts of L4 [Lie96]. It provides virtual address spaces,
threads, communication via synchronous and asynchronous IPC,
and capabilities for managing authority. The distinguishing feature
of seL4 is that it is the only kernel to date with a formal machine-
checked proof that the C code implementation adheres to the speci-
fication of the kernel. This additionally ensures that seL4 will never
crash or perform an unsafe operation. Whilst these strong func-
tional guarantees are sufficient for many systems, critical real-time
systems also require temporal guarantees to achieve safety.

seL4’s specification dictates that the kernel will never enter an in-
finite loop—i.e., all seL4 system calls eventually return to the user.
Previously, this was the only temporal guarantee known of seL4.
In this paper, we investigate seL4’s application to hard real-time
domains and present the benefits of analysing a formally verified
kernel. A microkernel with provably correct operation and guar-
anteed worst-case execution time bounds creates a foundation on
which large-scale, trustworthy, hard real-time systems can be built.

1.2 Contribution
This paper asserts that it is possible to compute realistic safe

upper bounds on interrupt latency for protected microkernel-based
systems. We demonstrate the first full WCET analysis of a memory-
protected OS kernel, seL4, with a view to tuning the kernel for hard
real-time applications. We perform a full context-aware analysis of
all of seL4’s code paths—specifically, the analysis virtually inlines
all functions within seL4 so that it is context-sensitive. Such an
approach is feasible due to seL4’s small code size (compared with
other operating system kernels), at around 8 700 lines of C code.
Despite this fact, it is, to our knowledge, still the largest code base
where a full context-aware WCET analysis has been performed.

Section 2 details the features of seL4 that make it amenable to
automated analysis. Section 3 describes the methods used to anal-
yse seL4. Section 4 shows the results of the analysis, outlining the
worst-case execution paths found.

2. SEL4 DESIGN FEATURES
The seL4 microkernel has several properties that assist with au-

tomated static analysis. First and foremost is that its code base is
small. We analysed the ARM version of the seL4 kernel, which has
around 8 700 lines of C code and 600 lines of ARM assembly code.

Although this is a large body of code by WCET analysis standards,
we found it to be just within the scalability limit for the implicit
path enumeration technique (IPET) [LMW95]. The full analysis
takes two hours to compute, and is described further in Section 3.

seL4 is an event-based kernel, where a single kernel stack is
shared by all user threads. Context switching between user threads
is performed by changing a variable containing the currently run-
ning thread. In contrast, process-based kernels, with dedicated per-
thread kernel stacks, must switch the stack pointer during a context
switch. This model may be more efficient in the presence of fre-
quent context switches [Lie93b], but the event-based model of seL4
aids static analysis significantly, as control flow is more structured.

Other features that simplified our analysis are listed below. Many
of these arose due to requirements of the formal verification pro-
cess, without any regard to a WCET analysis.

• seL4 never stores function pointers at run-time, so all jumps
can be resolved statically (with the help of symbolic execu-
tion).

• seL4 never passes pointers to stack variables. This simplifies
the analysis of memory aliasing for WCET.

• The task of memory allocation is delegated to userspace,
avoiding complex allocation routines within the kernel.

• There are very few nested loops within seL4 – automatically
identifying nested loops at the assembly level and their loop
relations is not an easy task in the presence of heavy compiler
optimisations.

• Unbounded operations (such as object deletion) contain ex-
plicit preemption points. If an interrupt is pending at a pre-
emption point, seL4 will postpone the current operation and
return to a safe state to handle the interrupt.

seL4 is accompanied by a large body of machine-checked proofs
which contains thousands of invariants and lemmas. It should be
possible to incorporate these into a WCET analysis to assist in ex-
cluding many infeasible paths.

One issue that arose during the analysis of seL4 is that in two
places mutually-recursive functions are used. The formal proof
guarantees termination and actually proves that the functions do
not call themselves more than once. This knowledge makes the
analysis easier, as we could simply virtually inline each function
at most twice. However, for this analysis, we chose to unwind the
recursion manually.

The design of seL4, in conjunction with formally-proven guar-
antees, has greatly assisted in performing an automated static anal-
ysis.

3. ANALYSIS METHOD
We performed a static analysis of the seL4 kernel binary to com-

pute a safe upper bound of its WCET. For comparison, we con-
structed the worst-case scenarios detected by the analysis and exe-
cuted them on real hardware. This gives a indication of how tight
the analysis is. Table 1 summarises the relevant properties of the
code analysed.

3.1 Static Analysis
We analysed seL4 for its interrupt latency by examining the worst-

case execution time of all possible paths through the kernel, ac-
counting for preemption points. Non-preemptible paths can begin
at a number of places, such as entry to a system call or page-fault
handler. Interrupts can be processed only once control is returned
to the user. In seL4, explicit preemption points detect if an interrupt
is pending within a long-running loop and if so, postpones the cur-
rent operation and returns up the call stack. The interrupt latency is

Table 1: Properties of the analysed seL4 binary.
Code size 98704 bytes

Lines of code 8642
Number of functions 84

Number of basic blocks 1922
Number of loops 68

Number of branches 1410

the sum of the WCET of the longest kernel path and the time taken
to dispatch the interrupt to a user thread.

The seL4 binary we analysed was compiled with gcc using -O2
optimisation level and the -fwhole-program flag, which enables
gcc to perform very aggressive optimisation and inlining of code.
This means that most function boundaries are lost and functions are
on average much larger because of inlining. The compiled binary
also exhibits optimisations such as tailcalls and loop rotation.

Despite having well structured code, seL4 violates this structure
in one specific code path. seL4 features a highly optimised routine
for handling the most common IPC operations, known as the IPC
fastpath; it improves the average time for these IPC operations by
an order of magnitude. It does this using a continuation-based con-
trol flow, avoiding the need for stack unwinding. Unfortunately,
the analysis tool currently does not support continuations—it ex-
pects all functions to return. As a result, we needed to disable the
IPC fastpath at compile time. However, we do not expect this to
affect our analysis, given the aforementioned presence of order-of-
magnitude slower operations elsewhere in the microkernel.

The control flow graph (CFG) of seL4 is extracted from the bi-
nary, using symbolic execution to resolve indirect branches (via a
register) and jump tables generated by switch statements. This step
was performed without any user guidance, made possible by the
absence of function pointers in seL4’s sources.

The iteration counts of loops were specified by hand. Most have
fixed bounds and could have been determined automatically with a
rudimentary analysis. Some, however, depend on the state of the
system—e.g. the number of runnable threads. These properties
are all bounded by total physical memory. To support this we al-
low the user to provide an expression relating the iteration count
to constants such as the size of physical memory. Due to heavy
inlining by the compiler, none of the iteration counts in the binary
are context-sensitive, even though some are at the source level (e.g.
memcpy).

The control flow graph, along with the loop iteration counts, is
passed to a modified version of Chronos 4.0, from NUS [LLMR07].
We adapted Chronos to support the ARM processor. Chronos uses
the IPET method [LMW95], which converts the control flow graph
into a system of linear equations (or inequalities) with integer co-
efficients. Chronos extends the basic IPET model with support for
instruction caches and pipeline modelling. All function calls are
virtually inlined so that the analysis is context-aware. This inlining
results in almost 400 000 CFG nodes (basic blocks) in the analysis.

The output of Chronos is a system of linear constraints and an
objective function to maximise subject to those constraints. With
400 000 CFG nodes, it creates two million variables and 2.5 million
equations.

Finally, an off-the-shelf integer linear programming solver is used
to compute the final WCET value. We used IBM’s ILOG CPLEX
Optimizer to compute the solution. This is the most computation-
ally intensive step of the process, and takes up to two hours for
the entire seL4 kernel, when performed on an Intel Core 2 Duo
running at 2.93 GHz. However, smaller portions of the kernel are

solved much faster—typically within a minute or less.

3.2 Hardware Measurements
Our test platform for measurements is a Beagleboard-xM with

a TI DM3730 processor. This processor has an ARM Cortex-A8
core running at 800 MHz, with a 32 KB L1 instruction cache and a
32 KB L1 data cache, both 4-way set-associative. The experiments
were configured to use 128 MB of physical memory. The latency of
a read or write to physical memory on this platform was measured
to be 80–100 cycles.

The L1 caches on the Cortex-A8 have an unspecified random re-
placement policy. This makes simulating the exact cache behaviour
impossible, and effectively forces any safe cache analysis to assume
a direct-mapped 8 KB cache. Furthermore, it makes it infeasible to
construct a true worst-case scenario on hardware.

The Cortex-A8 has a dual-issue pipeline, which is not accounted
for in our processor model. Whilst it is in theory possible to force
the Cortex-A8 to single issue, this oddly requires a “high security”
version of the processor which is not readily available. This means
that we can expect the observed results to be up to 2x faster than
computed by static analysis. Extending the static analysis model to
support a dual-issue pipeline is the subject of future work.

The Cortex-A8 also supports speculative prefetching and branch
prediction. These features were disabled in order to make measure-
ments more deterministic. This results in a fixed 13-cycle latency
on each branch.

Our experiments also disabled the data cache and L2 cache dur-
ing both estimation and real execution, as our analysis tools do not
yet support these on the ARM platform. This allowed us to confi-
dently validate our timing model.

3.3 Open vs. Closed Systems
We analyse seL4 for two different use-cases—open systems and

closed systems. We define an open system to be one where the
system designer cannot prevent arbitrary code from executing on
the system. This is in contrast to a closed system, where the system
designer has full control over all code that executes.

In an open system, real-time subsystems may execute in con-
junction with arbitrary and untrusted code (although confined by
the capabilities provided to them). seL4 uses a strict priority-based
round-robin scheduler. In such a scheme, time sensitive threads
must be assigned the highest priority on the system so that they
may run as soon as required (typically when triggered by a hard-
ware interrupt). seL4’s design disables interrupts whenever in the
kernel, except at a few select preemption points. As a result, the in-
terrupt latency for the highest-priority thread is determined by the
worst-case execution time of all possible operations performed by
seL4.

In a closed system, the system designer has full control over all
operations performed by the kernel. Therefore she can ensure that
operations that are known to be long-running do not occur at criti-
cal times, e.g. by allocating all resources at boot time and avoiding
delete operations at run time. The interrupt latency in this scenario
is defined by the WCET of a select number of paths within the ker-
nel which are used by the running system—primarily inter-process
communication (IPC) operations, as well as thread scheduling. The
permitted system calls are listed in Table 2.

Note that seL4_Call() can be invoked on an IPC object to per-
form IPC operations, but invoking it on other object types may lead
to the creation or deletion of kernel objects. We exclude these latter
operations from the analysis of closed systems, allowing only the
IPC-related uses of seL4_Call().

Table 2: System calls permitted in a closed system.
System call Description
seL4_Send() Blocking send to an endpoint.
seL4_Wait() Blocking receive on an endpoint.
seL4_Call() Combined blocking send/receive.
seL4_NBSend() Non-blocking send to an endpoint (fails

if remote is not ready).
seL4_Reply() Non-blocking send to most recent caller.
seL4_ReplyWait() Combined reply and wait.
seL4_Notify() Non-blocking send of a one-word mes-

sage.
seL4_Yield() Donate remaining timeslice to a thread

of the same priority.

Table 3: Computed upper bound versus measured observations
for feasible worst-case paths with data caches disabled.

Case Computed Observed Ratio
Endpoint deletion 686.0 ms 155.1 ms 4.42
IPC (open system) 635.1 ms 272.8 ms 2.33
IPC (closed system) 1148.2 µs 118.2 µs 9.71

4. EXPERIMENTAL RESULTS

4.1 Open System
In an open system, the analysis pointed us to two interesting

cases which were clear candidates for the worst-case execution path
in seL4.

The first case arises due to the nature of IPC in seL4. Threads
do not communicate with each other directly. Rather, they con-
struct IPC “endpoints” which act as communication channels be-
tween threads. Multiple threads are permitted to wait to receive (or
send) a message on a single endpoint—threads join a queue and are
woken in turn as partners arrive. If the endpoint is deleted whilst
there are still multiple threads waiting, each of these threads is re-
moved from the endpoint queue and added to the scheduler’s run
queue. A malicious program (looking to force a deadline miss),
could allocate as many threads as possible and construct this sce-
nario. We constructed such a scenario with 91 000 threads (limited
by physical memory). The results are shown in Table 3.

The second case arises due to a scheduler optimisation used in
seL4 known as lazy scheduling [Lie93b]. In microkernel-based
systems where IPC is frequent, a thread blocking on an IPC oper-
ation will often be made runnable again before the scheduler even
needs to reconsider it for execution. To benefit from this obser-
vation, seL4 does not immediately remove threads from the run
queue, but defers that work until a thread is selected to be sched-
uled. This leads to the obvious worst-case scenario where many
non-runnable threads pollute the run queue. The scheduler must it-
erate over all of these threads, inspect and then dequeue them, until
it finally finds a runnable thread (or the idle thread).

We constructed this scenario, using the seL4_TCB_Suspend()
operation which suspends a thread but does not immediately de-
queue it from the run queue. The second row of Table 3 com-
pares our computed value with measurements observed on hard-
ware. In this case, a system with 128 MB memory can create
119 720 threads.

4.2 Closed System
Within a closed system, where only the system calls outlined

earlier in Table 2 are permitted, our analysis detects an infeasi-

ble worst-case scenario. The seL4_Reply() operation is used to
respond to the most recent message received with seL4_Wait().
A one-time endpoint used to respond to the most recent sender
(known as a reply cap) is stored in a dedicated location in each
thread control block (the reply slot). The kernel must delete the ex-
isting reply cap before any call to seL4_Wait() and after a call to
seL4_Reply().

The analysis detected that deleting this reply cap could lead to a
long delay at the next reschedule, for the same reasons as outlined
in the first scenario of the open system, described earlier. Even
though we excluded explicit delete operations from our analysis,
this implicit operation was exposed. However, it is impossible to
construct this scenario, as reply caps can only be used by other
threads if they are first removed from the reply slot. Therefore the
delete operation on the reply slot will only affect the schedulability
of one thread.

With this knowledge, we could add an extra constraint which
excluded this infeasible path. The new analysis determined that
all IPC send or receive operations became candidates for the new
worst-case path. It identified two factors which affect the IPC op-
eration’s execution time. The first is that endpoints are addressed
using a structure resembling guarded page tables [Lie93a]; decod-
ing the address involves traversing a graph up to 32 levels deep. The
second is, unsurprisingly, the size of the message to be transferred,
on which seL4 places a hard limit of 120 32-bit words. The com-
bination bounds the worst-case interrupt latency of a closed system
to a very reasonable limit.

This case was also reproduced on hardware and measured, using
the seL4_ReplyWait() system call. The results are shown in the
final row of Table 3.

4.3 Analysis of Results
Table 3 shows that there is a factor of up to 9.71x between the

observed and computed execution times. This disparity can be at-
tributed to both the random cache replacement policy of the in-
struction cache, as well as the dual-issue pipeline of the Cortex-A8.
With a random cache replacement policy, constructing a true worst
case on hardware is extremely difficult. Modelling the Cortex-A8
pipeline perfectly is also a difficult task. Given that the memory ac-
cess latency on fast processors far outweighs the impact of pipeline
effects, a simpler pessimistic pipeline model is sufficient. None of
these factors cause the static analysis to be unsound and therefore
the computed values, though large, can be confidently used as a
safe upper bound for hard real-time systems.

It should be noted that these results are much worse than reality
as the data cache has been disabled both on hardware and in the
model. As memory latency is up to 100 cycles on this platform, this
adds a significant factor to the execution time of these test cases.

Certain code paths are guaranteed by the formal proof never to
execute. These paths could potentially be pruned by incorporating
invariants from this proof into the WCET analysis. For example,
there is an existing invariant in the seL4 proof which specifies that
the reply slot may contain a reply cap or is otherwise empty—no
other type of capability can reside there. This specific invariant
eliminates the infeasible path described in Section 4.2.

5. CONCLUSIONS AND FUTURE WORK
As the trend of feature integration in embedded devices contin-

ues to gain momentum, integrating numerous complex software
stacks in a fault-tolerant manner will be a necessity. In this pa-
per, we assert that microkernels can be used as the basis for hard
real-time systems that nonetheless feature such integration. The
primary requirement placed on these microkernels is a reasonable

guarantee on their interrupt latencies.
A tight static analysis of a microkernel to determine safe WCET

bounds is in fact feasible, as demonstrated by our analysis of seL4.
There are many features of seL4 that both ease the analysis pro-
cess and reduce the interrupt latency, without the need for a fully
preemptible kernel.

For the feasible paths in seL4, the disparity between our calcu-
lations and measurements arises for two reasons: first, the non-
determinism of the target hardware, and second, surmountable lim-
itations of our analysis tools.

Future work will focus on adding support for the data cache,
and automatically incorporating proof invariants into the WCET
analysis to further tighten the computed upper bound.

Concurrently, seL4 development will be guided by the results
from the WCET analysis. It is clear that lazy scheduling is not a
suitable optimisation for a real-time kernel and alternative methods
should be investigated. The analysis has also determined areas in
seL4 where preemption points should be added to bound interrupt
latency.

At present, seL4 can be used in a closed system with reason-
ably small guaranteed response times. Many applications, such as
deeply-embedded systems, are consistent with the closed system
model. In an open system, allowing untrusted code to execute, the
response time guarantees are still bounded but too large to be use-
ful. These results highlight areas where seL4’s real-time behaviour
can be improved.

6. ACKNOWLEDGEMENTS
NICTA is funded by the Australian Government as represented

by the Department of Broadband, Communications and the Digi-
tal Economy and the Australian Research Council through the ICT
Centre of Excellence program.

7. REFERENCES
[CEE+02] Martin Carlsson, Jakob Engblom, Andreas Ermedahl,

Jan Lindblad, and Björn Lisper. Worst-case execution
time analysis of disable interrupt regions in a
commercial real-time operating system. In 2nd
International Workshop on Real-Time Tools, 2002.

[CP01] Antoine Colin and Isabelle Puaut. Worst case
execution time analysis of the RTEMS real-time
operating system. In 13th ECRTS, pages 191–198,
Delft, Netherlands, Jun 13–15 2001.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser,
June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch, and Simon Winwood. seL4: Formal verification
of an OS kernel. In 22nd SOSP, pages 207–220, Big
Sky, MT, USA, Oct 2009. ACM.

[KWRP05] Raimund Kirner, Ingomar Wenzel, Bernhard Rieder,
and Peter Puschner. Using measurements as a
complement to static worst-case execution time
analysis. In Intelligent Systems at the Service of
Mankind, volume 2. UBooks Verlag, Dec 2005.

[Lie93a] Jochen Liedtke. A high resolution MMU for the
realization of huge fine-grained address spaces and
user level mapping. Arbeitspapiere der GMD No.
791, German National Research Center for Computer
Science (GMD), Sankt Augustin, Germany, 1993.

[Lie93b] Jochen Liedtke. Improving IPC by kernel design. In
14th SOSP, pages 175–188, Asheville, NC, USA,
Dec 1993.

[Lie96] Jochen Liedtke. Towards real microkernels. CACM,
39(9):70–77, Sep 1996.

[LLMR07] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik
Roychoudhury. Chronos: A timing analyzer for
embedded software. In Science of Computer
Programming, Special issue on Experimental
Software and Toolkit, volume 69(1-3), Dec 2007.

[LMW95] Yau-Tsun Li, Sharad Malik, and Andrew Wolfe.
Efficient microarchitecture modeling and path
analysis for real-time software. In IEEE Real-Time
Systems Symposium, pages 298–307, 1995.

[MHH02] Frank Mehnert, Michael Hohmuth, and Hermann
Härtig. Cost and benefit of separate address spaces in
real-time operating systems. In 23rd RTSS, Austin,
TX, USA, 2002.

[MHSH01] Frank Mehnert, Michael Hohmuth, Sebastian
Schönberg, and Hermann Härtig. RTLinux with
address spaces. In 3rd Real-Time Linux WS, Milano,
Italy, nov 2001.

[PZH07] Stefan M. Petters, Patryk Zadarnowski, and Gernot
Heiser. Measurements or static analysis or both? In
7th WS Worst-Case Execution-Time Analysis, Pisa,
Italy, Jul 2007. Satellite WS 19th ECRTS.

[SEGL04] Daniel Sandell, Andreas Ermedahl, Jan Gustafsson,
and Björn Lisper. Static timing analysis of real-time
operating system code. In 1st International
Symposium on Leveraging Applications of Formal
Methods (ISOLA’04), October 2004.

[SP07] Mohit Singal and Stefan M. Petters. Issues in
analysing L4 for its WCET. In 1st MIKES, Sydney,
Australia, Jan 2007. NICTA.

[YB97] Victor Yodaiken and Michael Barabanov. A real-time
Linux. In Proceedings of the Linux Applications
Development and Deployment Conference
(USELINUX), Anaheim, CA, January 1997.

	Introduction
	seL4 as a Hard Real-time Platform
	Contribution

	seL4 Design Features
	Analysis Method
	Static Analysis
	Hardware Measurements
	Open vs. Closed Systems

	Experimental Results
	Open System
	Closed System
	Analysis of Results

	Conclusions and Future Work
	Acknowledgements
	References

